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Abstract—Recently, novel cadmium telluride (CdTe) photon 
counting x-ray detectors (PCXDs) with energy discrimination 
capabilities have been developed. The aim of this study was to 
evaluate the agreement between a PCXD and analytical models 
regarding the energy response, the deadtime losses, and the 
distorted, recorded spectrum due to pulse pileup effects. It was 
found that the performances characteristics measured by the 
PCXD agree exceptionally well with those predicted by the 
analytical models.  

I. INTRODUCTION 
 URRENTL x-ray computed tomography (CT) images 
provide accurate anatomical information. Two major 
problems are that the images are not tissue-type specific 

and the contrast-to-noise ratio of images is not sufficient for 
some applications. These problems are due to the use of energy 
integrating detectors (EIDs). The EIDs reduce tissue contrast 
by applying larger weights to x-ray photons with higher 
energies, where the tissue contrast is less than for lower 
energies. Moreover, electric and Swank noise are added to data.  

Photon counting x-ray detectors (PCXDs) with energy 
discrimination capabilities could eliminate the above discussed 
inherent problems of EIDs—PCXDs count photons with no 
additional weight and noise. Multiple energy windows of 
PCXD would allow for tissue-specific images through accurate 
material decomposition and improve contrast-to-noise ratio of 
images.  

Major problems with PCXDs are a non-linear energy 
response and a limited detector speed (i.e., small operational 
count rates). If a “slow” PCXD is used under very intense 
x-rays, quasi-coincident photons are recorded as one event with 
a higher energy (Fig. 1). This phenomenon is called pulse 
pileup, which results both in a loss of counts, which is called 
“deadtime losses,” and in the distortion of the recorded 
spectrum. The guideline was to operate a PCXD with a less 
than 5% of count rate loss in order to maintain the quality of 
measurements (Fig. 1), which limit the operational count rate at 
less than 10% of the maximum output count rate of PCXDs.  

Thus, while the detector speed and the linearity of the energy 
response may need to be improved, it is also desirable to 
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develop algorithmic methods to compensate for the energy 
response, the count rate loss, and the pulse pileup effects, in 
order to take full advantage of the energy discrimination 
capabilities of PCXDs. The key to successful compensation 
methods is to have accurate models of the corresponding 
properties of PCXDs.  

These models have been investigated elsewhere. The energy 
response of counting detectors has been outlined [1]. Thus the 
aim of this study was to evaluate the agreement between the 
data measured by a PCXD [2, 3] and those estimated by 
analytical models in terms of the energy response, the deadtime 
losses, and the distorted, recorded spectrum due to the pulse 
pileup effects.  

II. PCXD AND ANALYTICAL MODELS 
In the following, we outline some of the feature of a PCXD, 

two simplified detection models (non-paralyzable and 
paralyzable detection models), and analytical models of the 
energy response, deadtime losses, and the spectral distortion of 
the recorded spectrum with pulse pileup effects.  

A.  DXMCT-1 PCXD 
The PCXD we used in this study is model DXMCT-1 

(DxRay, Inc.; Northridge, CA) [2, 3]. One cadmium telluride 
(CdTe) PCXD block consisted of 16 × 16 pixels with a pitch of 
~1 mm and a thickness of ~3 mm. Two such blocks were 
assembled and connected to four application specific integrated 
circuits (ASICs). Each ASIC contained 128 parallel channels, 
each consisting of an amplifier, a pulse shaper, two 
digital-to-analog converters (DAC), two comparators (energy 
thresholds), and two counters per detector pixel (see Fig. 1, 
top). Thus there were 1024 thresholds in total in the 
DXMCT-1.  

The energy deposited by each x-ray photon creates a pulse. 
The height of the pulse is compared with a given energy 
threshold. A count is registered in the counter associated with 
the given threshold if the pulse height exceeds the threshold. 
Subtracting counts in counters from adjacent energy thresholds 
yields the counts in the energy window defined by the two 
thresholds. The DAC allowed for fine tuning of the thresholds 
per channel in order to compensate for channel-to-channel 
variations. The details of the DXMCT-1 architecture have been 
described previously [2, 3].  

B. Non-paralyzable and paralyzable detection model  
The detection mechanism for most of PCXDs can be well 

modeled by either the non-paralyzable (NP) or paralyzable (P) 
detector model [1], although most detectors behave somewhere 

Modeling the performance of a photon counting x-ray 
detector: Energy response and pulse pileup effects  

Katsuyuki Taguchi1, Mengxi Zhang1, Eric C. Frey1, Xiaolan Wang1, Einar Nygard2, Jan S. Iwanczyk2, 
Neal E. Hartsough2, Benjamin M. W. Tsui1, and William C. Barber2 

C 

The first international conference on image formation in X-ray computed tomography 1

npack
Typewritten Text



 

in between. When a detector is in the active state, the first 
photon incident on the detector will put the detector into the 
detection (inactive) state for a finite period of time called the 
deadtime (or resolving time), τ. All photons incident on the 
detector during the deadtime (potentially) contribute to the 
pulse shape of the recorded count. For non-paralyzable 
detectors, such photons will not reset the time clock for the 
deadtime and will return to the active state after the deadtime τ. 
By contrast, in paralyzable detectors a detected photon resets 
the time clock; and the detector returns to the active state at a 
time τ after an event if and only if there is no additional incident 
photon during the deadtime interval. For low true count rates 
(aτ << 1, where a is the true count rate), the two methods 
provide identical results [1].  

C. Energy response  
The energy response of PCXDs involves the following two 

factors: a non-linear photon energy-pulse height response curve 
and a shift-variant finite energy resolution. The energy of the 
photon is measured by the height of the pulse (in millivolts, 
mV) generated by the photon. But their relationship may not be 
linear. Thus we model the non-linear relationship by 

( ) ( )1 2 3expmV E c c c E= − − ,            (1) 

where E is the photon energy, mV is the measured pulse height, 
and c1, c2, c3 are three parameters we will obtain for each 
threshold/comparator through calibrations.  

A method to model the shift-variant energy resolution was 
successfully developed but was not used in this study, as 
preliminary results showed the effect was not significant under 
the conditions used this study. 

D. Deadtime losses  
The recorded count rate aR with a given true count rate a and 

deadtime τ can be expressed as  
( )Pr |Ra rec aa τ×= ,               (2) 

where Pr(rec | aτ) is the probability of events being recorded, 
which has been discussed in Ref.[1] and is: 

( ) ( )
( )

1 1 NP detector
Pr |

exp P detector
a

rec a
a
τ

τ
τ

+⎧⎪= ⎨ −⎪⎩
.      (3) 

E. Distortion of the recorded spectrum 
The pulse pileup effects on the recorded spectrum are the 

most complex phenomenon of PCXD, for which we have 
successfully developed analytical models in Ref. [4]. Briefly, 
the expected counts recorded at energy E , Nr(E), can be 
calculated by a product of probabilities [4, 5]: 
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where mth order pileup means m+1 photons are recorded as one 
count. The first probability, Pr(rec | aτ), is the same as Eq. (3), 
and the second probability, Pr(m | rec), has been discussed in 
Ref. [1] and is:  

( )
( ) ( )

( ) ( )
exp ! NP detector

Pr |
1 exp exp P detector

m

m

a a m
m rec

a a

τ τ

τ τ

⎧ −⎪= ⎨
− − −⎡ ⎤⎪⎣ ⎦⎩

,  (5) 

The third probability of Eq. (4), Pr(E | m), will be discussed 
in detail in Ref. [4], which takes the following factors into 
account: the shape of pulses, the probability distribution of time 
intervals between photons, and the probability density function 
of the original photon energies.  

III. EVALUATION METHODS 
In this section we outline the experimental settings to acquire 

data and data analysis methods to assess the performance 
characteristics of the DXMCT-1in terms of the energy 
response, the deadtime losses, and the distortion of the recorded 
spectrum due to pulse pileup effects. Assuming the true count 
rate a is linearly related to the tube current I as a = k × I, we 
estimated five parameters (c1, c2, and c3 in Eq. (1), and τ and k) 
and one data (the incident x-ray spectrum, S0(E)) for each 
threshold; we then evaluated the agreement of the analytical 
models with the detector outputs. We used neither empirical 
parameters nor fudge factors in the models.  
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Fig. 1 (Top) The basic architecture of an individual channel in the ASIC. 
(Middle) When the pulse height exceeds a given energy threshold, a count will 
be added to an associated counter. Coincident photons will be recorded as one 
event with a higher energy than the original energies. (Bottom left)  The 
DxRay’s PCXD. (Bottom right) The experimental setting. 
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A. Energy response 
We estimated the three parameters of the photon energy-pulse 

height (mV) curve for each energy threshold/comparator, c1, c2, 
and c3 of Eq. (1), using 99mTc (140 keV), 57Co (122 keV), and 
four x-ray tube voltages (35, 50, 65, and 80 keV). The 
DXMCT-1 was placed 150 mm from an x-ray focus (see Fig. 2, 
right). There was no attenuator except for the detector box (an 
aluminum plate with a thickness of 1.2 mm). The DXMCT-1 
was operated in energy sweeping mode, where energy 
thresholds of the ASICs were decreased with an increment of -2 
mV after every acquisition. Counts above the corresponding 
threshold were acquired at each acquisition. The measurements 
were repeated 5 times for each x-ray tube voltage settings, 29 
times for 99mTc, 24 times for 57Co, respectively. The mean 
counts of multiple measurements at the same threshold mV 
value were calculated. A count between two thresholds was 
calculated by subtracting the mean counts acquired by adjacent 
threshold settings. The resulting energy spectrum is called an 
uncalibrated spectrum.  

The mV values that correspond to the energies of the tube 
voltage or the radioisotopes were found with the uncalibrated 
spectrum for each threshold/comparator. From the five mV 
values, three parameters, c1, c2, and c3 of Eq. (1) were estimated 
by the least squares method.  

Equation (1) was then evaluated at five energies and the 
coefficients of variation (COV) (i.e., the ratio of the root mean 
square difference to the mean of five mV values presented in a 
percentage) were calculated for each threshold.  

B. Deadtime losses 
We used the same setting as outlined in Sec. III.A. The 

DXMCT-1 was placed 150 mm from an x-ray focus (see Fig. 1, 
right). The x-ray tube voltage and the time period per 
acquisition were fixed at 80 keV and 10 ms, respectively. The 
tube current values used were 10, 25, 50, 75, 100, 200, 300, 
400, 500, 800, and 1000 μA. The DXMCT-1 was operated in 
energy sweeping mode. The measurements were repeated 
20-28 times in each tube current setting. Notice that 
considering a geometrical magnification factor, the x-ray 
intensity with the tube current of 1000 μA corresponded to that 
with 54 mA with no bowtie filter for clinical CT scanners.  

For each threshold/comparator, the mean of counts over 
multiple measurements, aR, was obtained at each tube current 
setting. Then, the deadtime τ and the conversion coefficient k 
for both NP and P detection models were estimated from the 
counts obtained by nine tube current values ≤ 500 μA using the 
weighted least squares method.  

The mean and the standard deviation of each of τ and k over 
all of the thresholds were calculated. The count rate model, Eq. 
(3), was evaluated at nine tube current settings and COV was 
calculated for both NP and P detection models.  

C. Distorted, recorded spectrum with pulse pileup effects 
The same data outlined in Sec. III.B were used. The mean 

counts of multiple measurements at the same threshold mV 
value were calculated for each tube current setting. A count 
between two thresholds was calculated by subtracting the mean 
counts acquired by adjacent threshold settings. This 
uncalibrated spectrum was then scaled and converted to the 

recorded spectrum, NPCXD(E), in the unit of counts per keV with 
an increment of 1 keV using the result of energy response 
calibration performed in Sec. III.A. 

 The true incident spectrum S0(E) was estimated for each 
threshold from the recorded spectrum at 10 μA. Then, for each 
threshold, the recorded spectra NPPE(E) for both NP and P 
detectors were estimated for each tube current setting using the 
pulse pileup model described in Sec. II.E, the deadtime τ and 
the conversion coefficient k estimated in Sec. III.B, and the 
incident spectrum S0(E) obtained above. 

 As a reference, a scaled incident spectrum with the recorded 
count rate, NSCL(E), 

NSCL (E) = aR × S0(E),               (6) 
was also obtained for each tube current setting.  

 At each tube current setting the root mean square difference 
(RMSD) between the spectrum estimated by the model, 
NPPE(E), and the mean spectrum measured by DXMCT-1, 
NPCXD (E), was calculated over the energy range between 30 
keV and 150 keV. The COV was then calculated by dividing 
RMSD by the mean of the measured counts per keV between 
30 keV and 150 keV. The RMSD and COV were also 
calculated between NSCL(E) and NPXCD(E).  

IV. EVALUATION RESULTS 
We identified 14 bad pixels among 512 pixels (thus 28 out of 

1024 thresholds) which had untypical outputs, e.g., extremely 
large count rates, convex energy-mV curves, etc. and excluded 
them from this study. Thus, 996 thresholds/comparators in total 
were examined.  

A. Energy response 
The mean and the standard deviation of the three parameters 

were c1 = 848.3 ± 5.3 [mV/keV], c2 = 688.4 ± 18.7 [mV/keV], 
and c3 = 0.0310 ± 0.0014 [/keV], respectively. Figure 3 shows 
the mean energy response over all thresholds. The standard 
deviation calculated over all thresholds was small. The mean 
COV value of all thresholds was as small as 0.2 %, which 
demonstrated that Eq. (1) modeled the energy response very 
well.  

B. Deadtime losses 
The mean and the standard deviation of the deadtime τ and 

conversion coefficient k over all thresholds were τ = 146.9±6.3 
[ns] and k = 30.93±3.17 [× 103 cps/μA] for the non-paralyzable 

detector model and τ = 81.2±2.2 [ns] and k = 25.35±1.88 [× 103 
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Fig. 3.  (Left) The mean energy response curve, i.e., the photon energy-pulse 
height curve, of all thresholds. (Right)  Estimated and measured count rate 
curves of mean of all of the thresholds.  
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cps/μA] for the paralyzable detection model, respectively. The 
standard deviation of deadtime τ over all thresholds was quite 
small: 4.3% for the NP detection model and 2.7% for the P 
detector model, respectively. 

The mean recorded count rates over all thresholds were 
estimated using Eqs. (2)-(3) and the parameters obtained above, 
for both NP and P detection models, and were plotted against 
tube currents in Fig. 3. The estimated count rates showed 
excellent agreement with those measured by DXMCT-1 (see 
Fig. 3).  

C. Distorted, recorded spectrum with pulse pileup effects 
Figure 4 shows the mean recorded spectra over all thresholds 

with the P detection model. The estimated true count rate and 
count rate loss ratio at each of the four tube current settings 
were  2.0 × 106 cps and 19% loss at 100 μA and 7.6 × 106 cps 
and 46% loss at 300 μA, respectively. The pulse pileup effects 
can be observed with the measured spectrum: there were more 
counts recorded at energies above 80 keV with larger tube 
currents than with smaller tube currents. Notice that despite the 
challenging large amount of count rate loss, the spectrum 
predicted by the pileup model agreed reasonably well with the 
measured spectrum especially at energies higher than 50 keV. 
In contrast, deviations between the scaled incident spectrum 
and the measured spectrum increased as increasing the tube 
currents, especially with energies higher than 50 keV. Counts 
recorded below 15 keV in the measured spectrum seemed to 
contain a lot of electric noise.  

Table I summarizes the quantitative analysis of the results. 
The COVs between the spectra measured and those predicted 
by a pulse pileup model with P detector were in the agreement 

of 3.7-7.2 % with tube currents of 100-300 μA where 19-46 % 
of counts were lost.  

V. CONCLUSION 
 It has been demonstrated that the performances of the PCXD 

agreed exceptionally well with analytical models, regarding the 
energy response, the count rate loss, and the pulse pileup 
effects. We believe the models are sufficiently accurate so that 
one can develop the corresponding compensation schemes 
based on these models.  

ACKNOWLEDGMENT 
We thank Zhihui Sun, M.Sc., and Hideaki Tashima, Ph.D., 

for their help with data acquisition and Jochen Cammin, Ph.D., 
Somesh Srivastava, Ph.D., and Ronald J. Jaszczak, Ph.D., for 
their helpful discussions and suggestions.  

 REFERENCES 
[1] G. F. Knoll, Radiation detection and measurement, 3rd ed. New York: John F. Wiley 

and Sons, 2000. 
[2] W. C. Barber, E. Nygard, J. S. Iwanczyk, M. Zhang, E. C. Frey, B. M. W. Tsui, J. C. 

Wessel, N. Malakhov, G. Wawrzyniak, N. E. Hartsough, T. Gandhi, and K. Taguchi, 
"Characterization of a novel photon counting detector for clinical CT: count rate, 
energy resolution, and noise performance," in SPIE Medical Imaging 2009: Physics 
of Medical Imaging, 1 ed. vol. 7258 Lake Buena Vista, FL, USA: SPIE, 2009, pp. 
725824-9. 

[3] J. S. Iwanczyk, E. Nygard, O. Meirav, J. Arenson, W. C. Barber, N. E. Hartsough, N. 
Malakhov, and J. C. Wessel, "Photon Counting Energy Dispersive Detector Arrays 
for X-ray Imaging," Nuclear Science, IEEE Transactions on, vol. 56, pp. 535-542, 
2009. 

[4] K. Taguchi, E. C. Frey, X. Wang, J. S. Iwanczyk, and W. C. Barber, "An analytical 
model of the effects of pulse pileup on the energy spectrum recorded by energy 
resolved photon counting x-ray detectors," in SPIE Medical Imaging 2010: Physics 
of Medical Imaging San Diego, CA: SPIE, 2010. 

[5] E. C. Frey, X. Wang, Y. Du, K. Taguchi, J. Xu, and B. M. W. Tsui, "Investigation of 
the use of Photon Counting Detectors with Energy Discrimination Capability for 
Material Decomposition in Micro-computed Tomography," in SPIE Medical 
Imaging 2007: Physics of Medical Imaging, 1 ed. vol. 6510 San Diego, CA, USA: 
SPIE, 2007, pp. 65100A-1-11. 

 
 

50 100
Energy [keV]

1500

(a) 100 uA

C
ou

nt
s-

pe
r-k

eV

0

1000

 

50 100
Energy [keV]

1500

(b) 300 uA

C
ou

nt
s-

pe
r-

ke
V

0

1000

 
NPCXD(E) NPPE(E) NSCL(E)

 
 
Fig. 4.   The following three energy spectra for a tube setting of 80 kVp are 
shown: the mean energy spectrum measured by all of the thresholds of 
DXMCT-1 (labeled NPCXD(E) in the figure); the energy spectrum predicted by 
the model of the spectral distortion due to pulse pileup effects with the 
paralyzable detection model (labeled NPPE(E)); and the scaled incident 
spectrum, NSCL(E), shown in Eq. (6) (labeled NSCL(E)).  The estimated deadtime 
loss ratio under the four tube current settings was 19% loss at 100 μA and 46% 
loss at 300 μA, respectively.   

Table I. The RMSD and COV calculated against the mean of the recorded 
spectra measured by all of the thresholds of the PCXD. 

 

RMSD 
[cnts]

COV
[%]

10.8
6.6

7.8
17.3

11.1
30.8

12.3
37.2

53.0
62.7

73.9
80.5

85.3
104.4

87.5
128.8

[30.9]

Tube current, μA [mean counts]

[63.9] [97.4] [119.6] [192.9] [234.7] [261.6] [277.5]
25 50 75 100 200 300 400 500

32.7
20.2

11.7
25.9

11.6
32.1

10.2
30.7

27.3
32.3

31.3
34.1

32.4
39.6

31.3
46.0

3.7

3.9

1.7

7.5

5.8

11.6

4.5

16.5

10.0

49.7

17.1

95.2

41.3

130.5

71.8

153.3

11.3
12.0

2.6
11.3

6.0
12.1

3.7
13.6

5.2
25.6

7.2
40.3

15.7
49.5

25.7
54.8

Scheme

*Non-paralyzable detection model
#Paralyzable detection model

§ Estimated by pulse pileup model, Eq. (6)
† Scaled incident spectrum, Eq. (15)

NP*, NPPE(E)§

NP*, NSCL(E)†

P#, NPPE(E)§

P#, NSCL(E)†

NP*, NPPE(E)§

NP*, NSCL(E)†

P#, NPPE(E)§

P#, NSCL(E)†

4 The first international conference on image formation in X-ray computed tomography



 

Sinogram restoration algorithm for photon 
counting clinical X-ray CT with pulse pileup 

compensation 
Somesh Srivastava1, Member, IEEE , Katsuyuki Taguchi1, Member, IEEE 

 
Abstract—Photon counting x-ray detectors (PCXD) can 
potentially boost the usefulness of clinical x-ray computed 
tomography (CT) scanners by efficiently measuring x-ray 
spectrum information [4,5]. A major hindrance in the adoption of 
PCXDs in the clinical setting is their limited speed. But, clinical 
CT imaging with such PCXDs was shown to be feasible provided 
four methods were developed [2]. Here, we present the 
development of one of those four methods: a sinogram restoration 
algorithm that includes pulse pileup as a part of the forward 
model (i.e., imaging process). We use simulation studies to show 
that with the use of the proposed algorithm, useful data can be 
obtained from PCXDs even when they are operating at a 20% 
count rate loss. This implies a 4-fold increase in the operational 
count rate of PCXDs. 
 

Index Terms—Computed tomography, photon counting, 
sinogram restoration .  

I. INTRODUCTION 
-RAY computed tomography (CT) is one of the foremost 
diagnostic imaging modalities in the clinic. It is widely 
used and is the only imaging modality of choice when a 

high-resolution image (≈ 1 mm) is required in a short scan 
duration (< 1 s) and the benefits of such a scan outweigh the 
risk of side-effects due to x-ray radiation exposure. However, 
current x-ray CT scanners do not utilize energy spectrum 
information. X-ray CT imaging methods that use energy 
information would have many advantages: improved 
contrast-to-noise ratio in images, reduced radiation dose, 
improved material decomposition, etc.  

Recent research has indicated that photon counting x-ray 
detectors (PCXDs) with energy discrimination capabilities can 
provide all these advantages. But, a major factor preventing the 
incorporation of PCXDs into clinical x-ray CT scanners is their 
limited speed. When detectors are “slow,” two or more x-ray 
photons arriving at the detector during its dead-time are 
recorded as a single count with a different energy. The resulting 
distortion of the x-ray spectrum is called the pulse pileup effect, 
and the loss of counts is termed count rate loss.  

The solution to the problem of pulse pileup and count rate 
loss may be based on hardware or software [2] or both. 

Recently developed PCXD technology, based on 
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Cadmium-Telluride (CdTe) and an advanced 
application-specific integrated-circuit (ASIC), has achieved a 
maximum output count rate (i.e. speed) of 6 Mcps (million 
counts per second per square millimeter) with two energy 
thresholds [1]. Even though this count rate is an achievement in 
its own right, it is still insufficient to avoid pulse pileup effect 
and count rate loss if used for clinical x-ray CT scanners, where 
incident count rates could be as high as 1000 Mcps [2].  

While improvements in detector hardware could one day 
handle such high count rates, a combination with numerical 
(software) techniques such as Ref. [2] is desirable. Taguchi, et 
al., proposed to combine the following three techniques [2]: (1) 
a bowtie filter to reduce the attenuated count rate (which is 
incident onto the detector) to a manageable level; (2) a pulse 
pileup correction algorithm using an accurate model of the 
pulse pileup effect of the PCXD; and (3) the exact interior 
region-of-interest reconstruction algorithm to obtain exact 
images in the interior of the scanned object (while avoiding the 
inaccurate data obtained at higher count rates near the edge or 
outside the object).  

Two key parts of the second technique are the pulse pileup 
model and the sinogram restoration algorithm. The analytical 
pulse pileup model has been recently developed [3]; the 
sinogram restoration algorithm has been developed in this 
study, using the concept of material decomposition. The pulse 
pileup model was used in the forward model to estimate the 
thicknesses (i.e., line integrals) of basis functions of the 
material decomposition for each ray. Images were then 
reconstructed from the estimated sinogram (line integrals).  

The contribution made in this paper is a new sinogram 
restoration algorithm whose forward imaging model includes 
pulse pileup.  To our knowledge, the proposed algorithm is the 
only one that incorporates the sophisticated pulse-pileup model 
developed in Ref.[3].  

1

This paper is organized as follows. In section II, we present 
an overview of the solution presented in [2]. In section III, we  
present the proposed sinogram restoration algorithm. Section 
IV presents the simulation setup. Section V discusses methods 
and results, and section VI presents conclusions and future 
work.  

1 This algorithm is much more robust and sophisticated than the highly 
simplified proof-of-concept algorithm first introduced by our group for a much 
simpler pulse pileup model at the NSS-MIC 2008 conference in Meng Xi, et al. 
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II. OVERVIEW OF THE PROPOSED SOLUTION 
PCXDs can be used in clinical x-ray CT scanners with a 

combination of four methods proposed in [2]. Here, we 
summarize each of those methods.  

A. Bowtie filter 
A bowtie filter (see [2]) reduces the pulse pileup problem by 

reducing the count rate incident on a PCXD. It is an x-ray 
attenuator placed just in front of the x-ray source, and is thicker 
towards the periphery than the center. Peripheral detectors have 
a much worse pulse pileup problem than the center detectors 
due to a higher count rate towards the periphery, and are 
benefited by the bowtie filter as it attenuates some of the count 
rate.  

B. Detector model 
The detector model is used to model the characteristics of the 

PCXD in terms of pulse pileup effect and count rate loss. An 
x-ray photon incident on the PCXD creates an electrical pulse2 
in the detection circuit (see Fig. 1). If one or more photons 
arrive within the dead-time period triggered by the first photon, 
the two electrical pulses are added and observed as a single 
electrical pulse (see Fig. 1).  

Due to pulse pileup, the recorded spectrum, Nr(E) differs 
from the incident spectrum, Nd(E). The two are related as 
follows [3]:  
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where, Nt is the true count rate, τ is the detector dead-time, 
and m is the order of the pileup, where m+1 photons are 
recorded as one count. We assume a non-paralyzable detector 
model, i.e. the detector always returns to the active state τ 
seconds after a photon arrival. For this model, Pr(rec| Ntτ) = 
1/(1+ Ntτ) and Pr(m|rec) = (Ntτ)m exp(-Ntτ)/m!. Pr(E|m) is 

formulated using the incident spectrum, Nd(E), and the 
parameters of the bipolar pulse-shape, and can be found in [3]. 

2 The shape of the electrical pulse in the PCXD studied here is bipolar, which 
was modeled by two triangles [3]. 

The detector output, yn, is the number of photons recorded in a 
set of Nbin energy-bins, (En, En+1), n = 1, …, Nbin, ENbin+1 = ∞, 
that span the recorded energy-range, i.e. yn=∫wn(E)Nr(E)dE 
over  (En, En+1), where wn(E) is a normalized window  function 
for energy window n.  

C. PCXD compensation scheme 
The PCXD compensation scheme proposed here uses a 

material decomposition approach (see Section III.A) and a 
penalized-likelihood sinogram restoration algorithm to 
compensate for the pulse pileup effect. For a given attenuation 
image of the object, we can compute the transmitted x-ray 
spectrum from the spectrum exiting the bowtie (obtained 
during calibration). And, for a given transmitted x-ray 
spectrum, we can use the pulse pileup detector model (see 
Section II.B) to compute the recorded counts. Thus, by 
minimizing (see Section III.C) the mismatch between the 
measured and computed recorded counts, which is given by the 
penalized-likelihood cost function (see Section III.B), we can 
determine the attenuation image that is compensated for pulse 
pileup.   

D.  Exact interior ROI reconstruction 
The corrected sinogram obtained above might still have 

inaccuracies for peripheral detector channels where count rates 
are too high. For such cases, the exact interior ROI 
reconstruction based on Kudo’s algorithm can be used. Kudo’s 
algorithm uses a priori knowledge of pixel values in a small 
region inside the ROI to reconstruct an exact image in the 
interior of the object. 

III. SINOGRAM RESTORATION ALGORITHM 
The sinogram restoration algorithm that compensates for the 

pulse pileup effect in a PCXD is presented here. Below, we 
outline four major aspects of the algorithm: the object model 
based on material decomposition, the imaging model for a 
PCXD, penalized-likelihood cost function, and the 
minimization algorithm. 

A. Object model based on material decomposition 
The object being imaged is represented as the distribution in 

e x-ray attenuation coefficient at different 
( , )f x E . It is represented as a sum of L basis materials 

as: ( , ) ( ) m ( )1
Lf x E a x Ek kk=Σ ρ=

 

k , where k is the material 

index,
k

ρ is the material density, is the mass attenuation 

coefficient, and 

( )m Ek

( )a xk is the basis coefficient of the kth material 
at location x . The goal of the proposed algorithm is to compute 
the corrected line integral for basis material k and ray i of the 
sinogram: ( )( ),l aray ii k k= ∫ x dx i k. Once l is computed, ,

( , )f x E can be easily reconstructed using, e.g., an analytical 
reconstruction method.  
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Fig. 1. A schematic diagram showing how the recorded energy differs from the 
incident spectrum with pulse-pileup effects.  
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B. Imaging model for a PCXD 
The imaging model for a PCXD is described based on the 

object model as follows. The spectrum incident on the detector 
for ray i is given by: 

   ( ) ( ) exp( ( )),, , ,1

L
N E N E l m Ed i b i i k k kk

∑= − ρ
=

where, ( ),N Eb i is the spectrum exiting the bowtie, which is 

determined during calibration. The incident 
spectrum, ( ),N Ed i , is distorted by pulse pileup into the 

recorded spectrum, ( ),N Er i , as described in Section II.B. The 

recorded spectrum is binned into energy bins by the PCXD to 
give us the recorded counts, . It is also known that are 

independent, Poisson distributed random variables [3]. The 
imaging model can be now summarized as: 

 

,yn i ,yn i

.( ) ( ),, , ,
Polychromatic Pulse Binning

x ray spectrum pileup Poisson noise
l N E N Er ii k d i n i−

⎯⎯⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯⎯→ y

C. Penalized-likelihood cost function 

The corrected line integrals, l , are estimated by minimizing 
the Penalized likelihood (PL) cost function, 

( ) ( ; ( )) ( )l L y y l R lΦ =− + , where L− is the negative log-likelihood 
function and ( )R l is the regularization function.  

The first term is the negative log–likelihood, L− ,which 
measures the degree of mismatch between the recorded counts 
measured during the scan, , and the recorded counts 

computed using the imaging model, 
,yn i

( ),yn i li , ( , ..., ),1 ,li . 

(Since

l li i L=  

,yn i s a function of i li  through the imaging model, it 

written as ( ),y ln i i .) Since are independent and Poisson 
distributed [3] with mean

,yn i
( ),y ln i i ,  

( ; ( )) ( ) log ( )., , ,L y y l y l y y lini n i n i n i− = Σ Σ − i  Thus, 

L− incorporates both the object model based on material 
decomposition and the imaging model that models spectrum 
distortion due to pulse pileup. 

The second term of the cost function, the regularization 
function, is to improve algorithm stability by including prior 
information about the estimated parameters, like smoothness. 
For now, we use a quadratic penalty function that regularizes 
within a single view only as it allows parallelizing the 
algorithm. 2( ) 1 2 ( ) ,, , ,R l w l lk k i j i j i k j kβ= Σ Σ Σ − where kβ is the 

regularization parameter for the kth material, and  is the 

neighborhood function, which equals 1 when rays i and j are 
neighbors and equals 0 otherwise.  

,wi j

We assume the following about ( )lΦ : a non-linear, 
non-convex, continuous function, with continuous gradient, 
which could possibly have local minima. It is difficult to find an 
explicit expression for its gradient due to the complex nature of 
the expression for pulse-pileup.  

D. Minimization algorithm  
The minimization algorithm estimates the corrected 

sinograms for L basis materials by minimizing the PL cost 
function, ( )lΦ . Since, finding a one step solution to the 
minimization problem is difficult, we use iterative methods (see 
Fig. 3). We start by computing a good initial guess, which is 
necessary since ( )lΦ could have local minima. Next, we note 
that each view of the sinogram can be updated in parallel, due 
to the design of ( )R l . Within each view, we update for li , 
considering all other sinogram bins of that view as constants − a 
grouped coordinate descent (GCD) approach. The update for 
li is compute using the conjugate gradient (CG) method [6] and 
a backtracking line-search (Brent’s method [6]). The gradient 
for the CG method is computed by numerical means as an 
analytical expression for the gradient is hard to determine. The 
complete minimization algorithm is summarized in Fig 3. 

∗ Compute initial guess of l 
∗ Loop over iterations 

∗ Loop over views (Parallel) 
∗ Loop over channels, i, of a particular view (GCD) 

∗ Update li using CG and line-search 
Do { 

∗ Compute gradient of Φ(l) numerically 
∗ Compute search direction using CG 

IV. SIMULATION SETUP 
We simulate a single-slice fan-beam x-ray CT scanner with 

an arc-detector. The source-to-isocenter distance is 570 mm, 
source-to-detector distance is 1140 mm, and fan-angle is ∼52°. 
The number of detector channels is 384. 360 views are 
collected from a 360° scan of duration 1s. The tube voltage is 
120 kV, and the tube current is adjusted so that the count rate 
exiting the bowtie and incident on the outermost detector 
(which is in the air path) is 10 Mcps. The bowtie filter is made 
of Aluminum and its thickness varies quadratically from 1 mm 
for the central ray to 50 mm for peripheral rays. For the PCXD, 
5 energy thresholds were simulated: 20, 50, 70, 90, and 120 
keV. The dead-time of the PCXD was 100 nsec.  

A water cylindrical phantom of diameter 30cm contained 
two bone cylindrical inserts of diameter 5cm.  

The size of the reconstructed images for the proposed and 
baseline methods in Section V is 256 × 256 with pixel size 1.25 
mm × 1.25 mm.  

C++ was used to code the sinogram restoration algorithm. 36 
cores, each equivalent to one core of Intel Xeon 2.33 GHz, 
were used for an execution time of 2 hours. 

V. METHODS AND RESULTS 
The proposed sinogram restoration algorithm, called the PL 

method here, is compared with a baseline method, an 
uncompensated reconstruction approach called the direct 

∗ Use backtracking line-search to update  l } 

While (
i

change in  li is large)  
Fig. 3. Summary of the minimization algorithm.  
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method here. Both methods reconstruct images of the x-ray 
attenuation coefficient at 4 energies: 35, 60, 80 and 105 keV. 
The PL method was used to obtain line integrals of material 
density of basis materials (water and bone) for each ray. Then, 
the images of spatial distributions of densities of basis materials 
were computed by a standard filtered backprojection and 
converted to the attenuation images using the object model (see 
Section III.A). The direct method corrects the recorded counts 
for count rate loss before directly reconstructing attenuation 
images using the detector output. The air scan for the direct 
method avoids pulse pileup by using a low tube current and 
later scaling the recorded counts to the tube current used for the 
phantom.  

The attenuation images at 4 energies for the PL method, the 
direct method and the truth are presented in Fig 4. The images 
from the PL method have much lesser noise, and the bias is also 
lower, especially for the 35 keV case. To quantify bias and 
noise, we first segment the image into water and bone regions 
(while avoiding the edge regions completely) and compute the 
mean and the standard deviation of attenuation coefficients of 
water and bone at 4 energies. Figs 5 and 6 and Table 1 show 
that the PL method outperforms the direct method in both mean 
and standard deviation for both water and bone. The direct 
method is especially poor for the 35 keV case where the signal 
is very noisy due to very few photons, while the PL method 
performs much better because it uses counts over the entire 
spectrum. 

VI. CONCLUSIONS AND FUTURE WORK 
 Based on the simulations presented here, we conclude that 

with the use of the proposed algorithm, PCXDs can yield useful 
data for as much as 20% count rate loss. This is equivalent to a 
4-fold increase in the useful output count rate of a PCXD – 
from 0.5 Mcps to 2 Mcps, for a dead-time of 100 nsec. Thus, 
the proposed algorithm brings us one step closer to using 
PCXDs in clinical x-ray CT scanners.  

In future, the proposed algorithm shall be expanded to 
include a third basis material, e.g. a contrast agent. Also, the 
regularization will be changed to take differences across views, 
and the minimization algorithm shall also change accordingly. 
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Fig. 4. Images of the x-ray attenuation coefficient (in cm-1) at 4 energies. Left: 
direct method, center: PL method, right: truth. 
 

TABLE I 
PERCENTAGE REDUCTION IN STANDARD DEVIATION -  

FROM DIRECT METHOD TO PL METHOD 
 Water Bone 

35 keV 57 79 

60 keV 26 36 
80 keV 38 45 

105 keV 44 44 
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Fig. 5. Mean value of attenuation coefficient (in cm-1) of water at 4 energies. 
(Error bars are +/- 1 standard deviation.) 
 

 
 

 

 
 
 
 

Fig. 6.  Mean value of attenuation coefficient (in cm-1) of bone at 4 energies. 
(Error bars are +/- 1 standard deviation.)  
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Abstract—Beam hardening artifact is caused by the 

polychromatic nature of the x-ray source and the energy-
dependent characteristics of the scanned object.  Despite the 
significant research activities in this area, beam-hardening 
artifact remains one of the major issues in x-ray computed 
tomography (CT).  With the recent technology advancements, 
dual-energy CT has become commercially available and 
clinically feasible.  In this paper, we present a projection-space 
beam-hardening correction technique to effectively overcome 
such artifact.  The approach is based on the differential signal 
from the water-calibrated dual-energy projections, and its 
efficacy is demonstrated by theoretical analysis and phantom 
experiments. 
 

Index Terms—Dual-energy CT, Beam-hardening Artifact, 
Material Decomposition, Monochromatic Imaging 

I. INTRODUCTION 

ual energy CT (DECT) has been one of the most active 
areas of research for x-ray computed tomography (CT) in 

recent years.  Although the concept of the DECT was 
proposed in the late 1970s, not long after the introduction of 
the first commercial CT scanner [1-4], technological limitations 
prevented this feature from becoming a useful clinical tool.  
The limitations include the slow data acquisition speed to 
control the patient motion and low x-ray tube power to 
overcome the increased noise.  With the introduction of helical 
and multi-slice CT in recent years, the technological barrier of 
DECT has been significantly reduced or eliminated.  Many 
research activities and advancements have been reported, and 
new clinical applications have been explored [5-14].   

In most DECT data acquisition, two sets of projections are 
acquired, one at a higher tube voltage setting (e.g., 140kVp) 
and the other at a lower tube voltage setting (e.g., 80kVp).  The 
energy-dependent attenuation characteristic of a material 
enables the two datasets to provide additional information 
about the material than a single kVp projection.  The extra 
information can be used to effectively reduce or eliminate the 
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beam-hardening effect and provide improved characterization 
of the scanned object.  

There are different approaches in the data collection of 
DECT.  The two datasets can be collected sequentially or 
simultaneously.  In the sequential data collection, one set of 
projection is collected first at high kVp (or low kVp) and the 
generator and tube are switched quickly to collect the low kVp 
projections.  The advantage of this approach is its simplicity 
since any conventional CT scanner can be programmed to 
accomplish such a data acquisition.  The disadvantage is its 
inability to handle patient motion.  Note that the time difference 
between the high-kVp and low-kVp is on an order of a second 
and significant patient motion can take place during that time 
interval.  Since DECT relies on a good registration between the 
two datasets, patient motion can lead to artifacts and a 
significant compromise in dual-energy performance. 

In the simultaneous data collection scheme, one can use two 
sets of tube-detector pairs that are offset by at least 90o in 
projection angle, and use one pair to produce the high kVp 
data and the other the low kVp data [15].  The two datasets are 
collected at the same time, but at different orientations.  
Alternatively, a conventional CT scanner can be redesigned in 
which the tube and generator switch quickly between high- 
and low-kVp settings in adjacent projections, as shown in Fig. 
1.  Since the time interval between two successive projections 
is a small fraction of a millisecond, and the angular difference 
between them is significantly smaller than a degree, the high- 
and low-kVp projections are acquired nearly simultaneously at 
nearly the same orientation.  This method is called fast kVp -
switching. 
 

 
 
 
 
 
 
 
 

Fig. 1 Schematic diagram of fast-kVp switching 
One of the key advantages of a dual-energy approach is the 

potential to significantly reduce metal and beam-hardening 
artifact which has been present in CT images since its first 

A Reconstruction Technique for Dual-Energy  
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invention in the early 70s.  In this paper, we describe an 
approach that significantly suppresses the metal and beam-
hardening artifacts by leveraging the different information 
provided in the dual-energy projections.  

II. METHOD AND MATERIAL 

Before a detailed discussion on the proposed approach, a 
general description of the current reconstruction process is in 
order.  In the conventional CT reconstruction, the collected 
scan data first undergoes a series of calibration steps to 
remove potential non-ideal performance of the CT subsystems 
and inherent nonlinear behavior of the x-ray physics.  One of 
the calibration steps is the so-called water-calibration.  In this 
step, the original projection is mapped to a new set of 
projections based on the attenuation characteristics of water.  
This step enables the removal of the beam-hardening effect 
due to water or soft-tissue. 

Our approach is based on the observation that “water” 
beam-hardening correction is quite accurate if the scanned 
object is made of water, soft-tissue, or similar material, and the 
amount of beam-hardening artifact present in the reconstructed 
CT images is negligible.  The water beam-hardening correction 
can be carried out either in the projection domain or image 
domain.  In the projection domain, the measured projection 
after the minus logarithm operation is mapped by a high order 
polynomial to a new set of projections prior to the filtered 
backprojection (FBP) process.  The polynomial coefficients are 
determined based on phantom measurements and theoretical 
calculations.  As a result, the line integral of the attenuation 
coefficients accurately represents the “water” portion of the 
scanned object.  Since in x-ray CT, the CT number of water is 
defined to be zero regardless of the acquisition x-ray tube 
voltage setting, the portion of the projection contributed by 
water (or the soft-tissue) in either the high- or the low-kVp 
settings are identical. 

The residual beam-hardening and metal artifacts should then 
be solely due to the presence of materials that are significantly 
different from the water in terms of their attenuation 
characteristics.  As a result, to remove such artifacts, we 
should focus our attention on the portions of the projection 
that are contributed by non-water materials.  If we examine the 
differential signals between two projections of different kVps 
collected at the same projection angle, the signals should 
contain, in theory, the contributions of the non-water material 
only.   For illustration, Fig. 2(a) shows the projection profiles of 
a water-calibrated phantom scan collected at 140kVp and 
80kVp respectively, and Fig. 2(b) shows the difference 
projection.  Note that the “water” portion of the projection is 
effectively removed. 

In the “water” region of the projection, the noise of the 
difference projection is larger than either the 80kVp or the 
140kVp projections.  Based on the previous analysis, the signal 
in the water portion of the projection should be essentially zero 
and contain no useful information.  The increased noise in the 

water region only increases the noise in the corrected 
projection, and the contribution of these signals should be 
suppressed.  One way of accomplishing this is by scaling the 
difference projection prior to its use in the correction: 
 =),,( zD βγ

[ ]



<−−
≥−−

tzpzpzpzp
tzpzpzpzp

HLHL

HLHL

),,(),,(,),,(),,(
),,(),,(),,,(),,(

βγβγβγβγξ
βγβγβγβγ  (1) 

where γ, β, and z denote the channel angle, view angle, and 
detector row, respectively.  D(γ,β,z) represents the processed 
difference projection, PL(γ,β,z) is the water-calibrated 
projection sample collected with the low kVp, PH(γ,β,z) is the 
water-calibrated projection of the high kVp, and ξ(x) is a non-
increasing function of x.  Alternatively, adaptive filtering can 
be employed to suppress the noise in the difference projection.  
The amount of smoothing depends on the magnitude of the 
difference signal.   
 
 
 
 
 
 (a) 
 
 
 
 
 
 
 
 
 
 (b) 
 
 
 
 
 
 
 

Fig. 2(a) Water-calibrated phantom projection profiles of 
140kVp (blue) and 80kVp (red) scans  

(b) Difference projection 
Given the nature of  metal artifact and beam-hardening, we 

know that the error is caused by the inaccurate measurement of 
the projection in the non-water object.  Therefore, we want to 
estimate the error, EH(γ,β,z) and EL(γ,β,z), based on D(γ,β,z).  
We develop a mapping function, f, between E and D based on 
theoretical calculation and phantom experiments of known 
materials.  In the implementation, we use polynomials to 
establish the relationship between the two: 
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=
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where αk and βk are the coefficients of polynomials, and are 
determined experimentally.  Although the coefficients appear 
to be constants in the equation, they change based on the 
intensity of the difference projections.  That is, αk and βk 
change as functions of D(γ,β,z). Once the error projection is 
obtained, we can subtract the error from the original projection 
to obtain the projections without metal and beam-hardening 
effects: 

 ),,(),,(),,(' zEzpzp HHH βγβγβγ −=  (3) 

 ),,(),,(),,(' zEzpzp LLL βγβγβγ −=  

The corrected projection can then be used to reconstruct the 
high-kVp and low-kVp images.  Note that these images are 
similar to the conventional CT images with the exception of the 
removal of beam-hardening artifacts. 

Often, it is desirable to generate material-decomposed 
images.  That is, the scanned object is depicted in a pair of 
density images of a pair of basis materials.  For example, if soft-
tissue and bone are selected as the basis materials, the bone 
will be automatically removed from the soft-tissue equivalent 
density image, and the soft-tissue will be removed form the 
bone density image.  Other materials, such as iodine, will be 
distributed into both density images.  Mathematically, this can 
be accomplished by applying another mapping prior to the 
reconstruction: 

 [ ]),,('),,,('),,( 11 zpzpzq LH βγβγηβγ =  (4) 

 [ ]),,('),,,('),,( 22 zpzpzq LH βγβγηβγ =  

where η1 and η2 are the functions to map from the high- and 
low-kVp projections to the material basis pair, m1 and m2.  q1 
and q2 are the material density projections of the selected 
material basis pair.  The process to produce the mapping 
functions, η1 and η2, is well known and will not be discussed 
here.  The FBP reconstruction algorithm can then be used on 
the density projections to generate equivalent density images 
for the basis materials m1 and m2.   

Using the material density projections, one can easily 
generate a synthesized monochromatic projections (a set of 
projections mimicking the data acquisition if a monochromatic 
x-ray source is used) based on the following formulation: 

 ),,()(),,()(),,,( 2211 zqEzqEEzp βγµβγµβγ +=  (5) 

where µ1 and µ2 are the mass attenuation coefficients for 
materials m1 and m2, respectively.  E represents a pre-defined x-
ray energy.  The flow diagram of the reconstruction process is 
shown in Fig. 3. 

It should be pointed out that since the beam-hardening 
correction is performed in the projection space, the additional 
computation to the reconstruction process is negligible.  In 
addition, since the correction is performed on a channel-by-
channel basis, little impact on spatial resolution is expected.  

As is shown in the reconstruction flowchart in Fig. 3, the 
beam-hardening corrected low- and high-kVp projections can 
be used directly to produce conventional single-kVp images, or 
can be used to produce material decomposed density 
projections to generate material basis images or 
monochromatic images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Flowchart for image generation 

III. EXPERIMENTAL RESULTS 
To determine the efficacy of the proposed approach, several 

phantom experiments were conducted.  The phantoms were 
scanned on a Discovery 750 HD scanner (GE Healthcare, 
Waukesha, Wisconsin) under GSI (Gemstone Spectral 
Imaging) acquisition mode.  The scan data is regrouped into 
even and odd views to separate the high-kVp and low-kVp 
scan data.  Both datasets undergo their respective water-
calibration steps similar to the single-energy data acquisition 
and calibration.  To enhance the appearance of the beam-
hardening artifacts, a cardiac phantom was scanned with the 
inserts filled with diluted iodine contrast with concentration 
levels higher than typical clinical cardiac studies.  A metal pin 
was placed on top of the cardiac phantom to produce 
additional artifacts.  To establish the baseline, the water-
calibrated 80kVp and 140kVp projections were used to produce 
two reconstructed images as shown in Figs. 4 (a) and (b).  It is 
clear from the images that the beam-hardening artifacts are 
quite pronounced.  The artifacts are shown as the dark 
shadings or streaks connecting the dense objects in the image.  
Note in particular the dark streaks connecting the metal pin and 
its nearby iodine inserts. 

The projection dataset was then corrected with the 
proposed method and FBP algorithm was used to produce the 
reconstructed image of the cardiac phantom as shown in Fig. 
4(c).  Notice that the dark streaks between the iodine inserts 

80kVp projection 140kVp projection 

projection 
mapping 

Mono or MD images 

80kVp image 140kVp image 

80kVp 
projection 

140kVp 
projection 

Water calibration Water calibration 

error projection 
generation 
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are nearly eliminated.  Even the streaking artifact connecting 
the pin and the iodine inserts is substantially reduced.  This 
experiment clearly demonstrates the effectiveness of the 
proposed correction algorithm in terms of beam-hardening 
artifact correction. 
 

 
 
 
 
 
 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Reconstructed images of a phantom experiment 
(a) 80kVp with water-correction, (b) 140kVp with water 

correction, (c) the proposed correction 

IV. CONCLUSION 
In this paper, we present a dual-energy reconstruction 

algorithm to combat beam-hardening and metal artifacts.  The 
algorithm is based on the observation that the beam-hardening 
associated with the water or soft-tissue material is properly 
corrected with the water-calibration.  The residual beam-
hardening effect due to other material types can be corrected 
based on the difference of the dual-energy projections. 

Phantom studies were conducted to investigate the efficacy 
of the proposed approach.  Phantom results clearly 
demonstrate the effectiveness of the proposed algorithm, even 

under conditions worse than typical clinical environment, and 
with the presence of multiple materials.  Furthermore, since the 
proposed correction is performed in the projection space, the 
computational impact to the overall reconstruction is kept to a 
minimum.  
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Spectral CT Imaging using a Slow kVp switching
Technique and PICCS Image Reconstruction

Timothy P. Szczykutowicz and Guang-Hong Chen

Abstract—Dual energy CT using a fast kVp switching
technique and the standard filtered backprojection (FBP)
image reconstruction method has recently been studied.
With conventional FBP methods, high slew rates are re-
quired for acceptable image reconstruction with high image
quality. However, high slew rates also require hardware
changes to enable data acquisition. In this work, we aim at
studying the necessary slew rate for dual energy CT imag-
ing provided that the PICCS algorithm is used for image
reconstruction. Two important results from this study are
as follows: (1) a slew rate better than 7.5 kV/view is suf-
ficient for dual energy imaging; (2) the slow slew rate also
allows for spectral CT imaging in which more than two dif-
ferent kVp images are reconstructed.

Index Terms—Slew Rate, kV switching, Dual Energy,
triple energy.

I. Introduction

HOUNSFIELD’S original paper on CT mentioned a
method to determine a materials atomic number us-

ing a simple image subtraction technique using two dif-
ferent energy spectra[1]. Later, the work of Alvarez and
Mocovski confirmed the need for two energies for material
discrimination by showing how the attenuation coefficient
can be decomposed into two parts over the diagnostic en-
ergy range[2]. The two parts represent the dominant in-
teractions of x-rays with matter over the diagnostic energy
range in CT imaging, the photoelectric and Compton ef-
fects. Using basis functions representing these two interac-
tions, one can create electron density, atomic number, and
material specific density images.
In order to realize dual energy CT in a clinical setting,

a CT system must be capable of acquiring CT projection
data at two or more different energies. Collecting this much
data within a single gantry rotation is not a trivial prob-
lem. Many solutions have been proposed and are currently
being used clinically and investigated experimentally [3],
[4], [5], [6], [7]. In this study, we show how a dual energy
data acquisition can be realized using a single gantry rota-
tion that collects a complete set of mixed energy projection
data using a slow kVp modulation scheme. The slow kVp
modulation causes the collected data at the low and high
energies to be undersampled. Low and high energy data
are required in order to reconstruct low and high kVp im-
ages from which, an image space dual energy decomposi-
tion can be performed. Conventional reconstruction algo-
rithms cannot provide adequate image quality as streaking
artifacts would be present due to the undersampled data

T.P. Szczykutowicz is with the Department of Medical Physics ,
University of Wisconsin Madison, Madison, WI 53705-2275. Phone:
+1 608 263–0211, e-mail: szczykutowic@wisc.edu

G-H. Chen is with the Departments of Medical Physics, Radiology
and Human Oncology, University of Wisconsin Madison, Madison,
WI 53705-2275. Phone: +1 608 263–0089, e-mail: gchen7@wisc.edu

acquisition. Using the prior image constrained compressed
sensing (PICCS) algorithm, we have demonstrated that
low and high kVp images can be reconstructed without
streaks and that these images can then be used to perform
dual energy decomposition. We have also shown the ability
to reconstruct more than two different kVp images. This
effectively means there are more measurements than are
required for a standard two material basis decomposition.
Therefore, a material decomposition into more than two
basis components is possible.

II. Methods and Materials

(a) (b) (c)
Fig. 1. The three phantom objects used. (a) Phantom I: The outside
ring is muscle and the inside is water. The circles, clockwise from
the top, are blood, fat, muscle, and bone respectively. (b) Phantom
II: The outside sheath is muscle. The white ellipses and ring are
cortical bone and the large cavities are blood surrounded by water.
(c) Phantom III: The outside sheath is muscle. The inside is water
and the circular ROI’s are Calcium, Iodine and Blood clockwise from
9 o‘clock.

A. kVp Modulation Simulation

The kVp slew rate was simulated for a range of values
yielding x-ray acquisition patterns in which the kVp varied
angularly. The total number of views acquired per rotation
was kept constant and the kVp was varied from 80-140 kVp
at different slew rates. A slew rate of 60 kVp per view angle
(kV/view) corresponds to “fast kVp switching” as the kVp
is capable of making the entire transition from low to high
or high to low in a single view angle increment. A total
of 2,000 views were simulated per rotation. A slew rate
of 60 kV/view with 2,000 total views yields 1,000 views
at 80 and 140 kVp. The total number of view angles at
80 or 140 kVp depends on the slew rate, total number of
acquired angles (T), and the kVp separation according to
equation 1.
This model assumes a piecewise linear transition from

kVp to kVp, hence the kVp modulation scheme takes on
the appearance of a triangle waveform. Figure 2 plots kVp
as a function of angle for a complete 360 degree scan for

Total # of low or high kVp projections (1)

= T ·SlewR
2·(kVphigh−kVplow)
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different slew rates. One important observation can be
made from this plot: The total number of view angles for
80 and 140 kVp decreases as the slew rate decreases. As
a result, undersampling artifacts appear when the FBP
image reconstruction algorithm is used.
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Fig. 2. Plots of the three different kVp modulations. All modulations
were simulated for a full 360◦s, a limited angular range is depicted
here to better visualize the modulation.

B. Filtered Back Projection and Iterative Reconstructions

In order to compare PICCS with other reconstruction
methods, reconstructions were performed using the stan-
dard filtered back projection method[8] using a Shepp-
Logan filtering kernel and a slightly modified version of the
simultaneous algebraic reconstruction technique SART[8].
An interleaved projection update strategy was used with
a ray based forward projection and a pixel based backpro-
jection in which, the image was updated view by view.

C. Reconstructing undersampled kVp data sets using
PICCS

In this paper, an image (the prior image) is recon-
structed using all of the data collected over a complete
rotation and used to constrain the reconstructions of the
low and high kVp data to produce accurate and streak free
low and high kVp images (target images). Figure 3 depicts
the data usage in this application of PICCS. The numer-
ical implementation of the PICCS algorithm used in this
study is the same as that used in references [9], [10].

Fig. 3. The data flow and usage in this application of the PICCS
algorithm.

D. Triple energy image reconstruction in the PICCS
framework

The previously described framework uses all of the view
angles to reconstruct the prior image and then uses the
lowest and highest energy projections to obtain streak free
low and high energy images. As the kVp is modulated
from the lowest energy to the highest energy, a significant
number of intermediate view angles are acquired. Taking
advantage of this fact, one can utilize these intermediate
energy projections and reconstruct an intermediate energy
image. In this study, an example of this procedure for
the following energy triplet was performed: 80, 110, and
a 140 kVp. Projection data was acquired using a slew
rate of 7.5 kV/view, which provided 125 views for the 80
and 140 kVp images and 250 view angles for the 110 kVp
image. The prior image was a fully sampled image acquired
during the same gantry rotation as the 80, 110, and 140
kVp projections.

E. Material Density Image Decomposition

An image based material density scheme was used to
process the resulting low and high kVp images after the
PICCS reconstruction step. The basis materials chosen
were water and cortical bone for the two material basis de-
composition and blood, Calcium and Iodine for the three
material decomposition. For the two material basis de-
composition, the average pixel values were determined for
water and bone using fully sampled filtered back projec-
tion images at 80 and 140 kVp. These values were used to
create basis material vectors onto which a pair of low and
high kVp images could be decomposed onto. The same
procedure was performed for the three material basis im-
ages using 80, 110 and 140 kVp images.

III. Results

The results section consists of three parts. The first part
includes the results from Phantom I shown in Figure 1.a.
This phantom was chosen such that a quantitative eval-
uation of the PICCS results could be made. Phantom II
(Figure 1.b) was chosen to test the reconstruction fidelity
of the PICCS algorithm as it provided areas of small de-
tail and highly attenuating bony structures. Phantom III
(Figure 1.c) was chosen for the evaluation of a three ma-
terial basis decomposition and regions of blood, Calcium
and Iodine were present in order to evaluate if one could
distinguish between the Calcium and Iodine regions after
a three basis material decomposition.

A. Phantom I

The results for Phantom I are shown in Figures 4, 5,
and 6. Quantitative results will not be shown for the rest
of the phantoms as a detailed quantitative comparison is
shown for Phantom I. The relative root mean square er-
ror (RRMSE) plot shows how the PICCS results show a
relatively constant error while the FBP and SART images
diverge at low slew rate as seen in Figure 5. A quantita-
tive analysis of the reconstruction accuracy of the PICCS
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images given in Figures 4 and 6 show how accurate the
PICCS images are in both the attenuation image and ma-
terial basis image spaces. The PICCS images are within ±
0.5% of the fully sampled FBP result for the attenuation
image results and within ± 10% of the standard devia-
tion in the background noise in the material basis images.
As these errors are small, the plots in figures 4 and 6 are
not meant to show the differences between different slew
rate results for PICCS, but to show the accuracy of all the
PICCS results. In effect, the PICCS mean values all lie
very close to the fully sampled FBP mean values.
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Fig. 4. Mean ROI values from the PICCS Images for Phantom I
(the actual images are not shown in this abstract). Mean ROI values
from a fully sampled FBP image are also included and the ± 0.5%
bounds on the FBP value. The scale is not sufficient to distinguish
between individual PICCS values, but one can appreciate how all of
the PICCS values are within ± 0.5% of the fully sampled FBP result.
For each material, the lower cluster of points are for 140 kVp, and
the higher for 80 kVp.
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Fig. 5. Relative Root Mean Square Error between FBP, SART, and
the PICCS algorithm for Phantom I.

B. Phantom II

The same reconstruction procedure was carried out as
in the last section for Phantom II. The results are shown
in Figures 7 and 8. In this case, streaking artifacts be-
come evident in the FBP and SART images due to the
small high contrast bony structures. For this phantom, the
onset of streaking artifacts in the attenuation images for
FBP and SART can be seen at a slew rate of 15 kV/view.
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Fig. 6. Mean ROI values taken from the bone and water material
density images. The clusters centered around zero for bone and water
represent the mean ROI value of the opposite basis for bone and water
(the bone ROI on the water basis image is zero and the water ROI
on the bone image is zero). For comparison, fully sampled FBP basis
material decompositions were compared and the PICCS results are
all within ±10% of the noise background to the FBP results.

The PICCS material basis results show streak free recon-
struction for all slew rates studied but at a slew rate of
4 kV/view a degradation of the the smaller structures is
clearly visible. At this slew rate, the FBP and SART im-
ages are severely affected by streaking artifacts. The stop-
ping point or limiting slew rate for the PICCS reconstruc-
tion appears to be somewhere around 7.5 kV/view as at
this slew rate the smaller structures are still well visualized
especially around the spine (compare the PICCS slew rate
7.5 and 4 kV/view images on Figure 8).

Fig. 7. Results of Phantom II. The numbers refer to the kV/view
slew rate used to acquire the data for each image.

C. Phantom III

As explained in the materials and methods section, the
phantom for this section was specially chosen such that
the differences in the Calcium and Iodine regions in nor-
mal attenuation images would not be discernible. This
represents the clinical situation in which the ability to dif-
ferentiate calcifications and an Iodine contrast agent is de-
sirable. The slew rate of 7.5 kV/view was chosen providing
125 projections for the 80 and 40 kVp images and 250 pro-
jections for the 110 kVp image. Figure 9 is a scatter plot
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Fig. 8. Results of complex phantom two basis material decomposi-
tion. Note that at a slew rate of 4 kV/view the PICCS result seems to
loose the ability to accurately reconstruct the small bony structures,
while streaking artifacts are present in the FBP and SART images
at a slew rate of 15 kV/view.

of the values within a Calcium, blood and Iodine region
of the reconstructed images for 80, 110, and 140 kVp en-
ergies. A clear separation in energy is visible between the
energies in the attenuation values. Using these three im-
ages, a three basis material decomposition was performed
and the results are given in Figure 10. The Calcium and
Iodine images were filtered with a mean filter of radius =
2 pixels to reduce the image noise. No such filtering was
done to the blood image.
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Fig. 9. Mean ROI values for Phantom III for the blood, Calcium
and Iodine regions. The error bars are the standard deviation of the
pixel values inside the ROI regions.

IV. Conclusions

It was demonstrated that the PICCS algorithm allows
for dual and triple energy image reconstruction from a sin-
gle gantry rotation using a kVp modulated scanning proto-
col. For the dual energy application, the PICCS algorithm

(a) (b) (c)

Fig. 10. (a) Calcium Basis Image. (b) Iodine basis image. (c) Blood
basis image. The Calcium insert is at the 9 o’clock position and the
Iodine insert is at the 3 o’clock position. Excellent differentiation is
observed between these two inserts.

was compared to standard FBP and SART and was shown
to outperform them in terms of the presence of streaking
artifacts and the image quality of the basis material im-
ages. A three material basis decomposition was also shown
to be made possible by reconstructing an additional energy
within the lower and upper kVp values. This allowed for
the differentiation between a Calcium and an Iodine region
on a phantom where their respective attenuation values
were roughly the same.
In summary, the central results of this study are as fol-

lows:
• Dual Energy Imaging was realized using a single
gantry rotation with a slow kVp slew rate enabled
by the PICCS algorithm.

• The possibility of reconstructing images at more than
two energies from a single gantry rotation was demon-
strated, and a three material decomposition was per-
formed.

References

[1] G. N. Hounsfield, “Computerized transverse axial scanning (to-
mography): Part i. description of system,” British Journal of
Radiology 46, pp. 1016–1022, 1973.

[2] R. Alvarez and A. Macovski, “Energy-selective reconstruction
in x-ray comptued tomography,” Phys. Med. Biol. 21, pp. 733–
744, 1976.

[3] F. Kelcz, P. M. Joseph, and S. Hilal, “Noise considerations in
dual energy ct scanning,” Med. Phys. 6(5), 1979.

[4] T. Johnson, B. Kraub, M. Sedlmair, M. Grasruck, H. Bruder,
D. Morhard, C. Fink, S. Weckbach, M. Lenhard, B. Schmidt,
T. Flohr, M.F.reiser, and C. Becker, “Material differentiation
by dual energy ct: initial experience,” Eur. Radiol 17, 2007.

[5] D. Xu, D. Langan, X. Wu, J. Pack, T.M., Benson, J. Tkaczky,
and A. Schmitz, “Dual energy ct via fast kvp switching spectrum
estimation,” Proc. of SPIE 7258, p. 72583T, 2009.

[6] K. Taguchi, M. Zhang, E. Frey, and J. Xu, “Image-domain
material decomposition using photon-counting ct,” Proc. of
SPIE 6510, p. 651008, 2007.

[7] Y. Zou and M. D. Silver, “Analysis of fast kv–switching in dual
energy ct using a pre–reconstruction decomposition technique,”
Proc. of SPIE 6913, p. 691313, 2008.

[8] A. C. Kak and M. Slaney, “Principles of computerized tomo-
graphic imaging,” IEEE Press New York , 1988.

[9] G. H. Chen, J. Tang, and S. Leng, “Prior image constrained
compressed sensing (piccs): A method to accurately reconstruct
dynamic ct images from highly undersampled projection data
sets,” Med. Phys. 35, pp. 660–663, 2008.

[10] G. H. Chen, J. Tang, and J. Hsieh, “Temporal resolution im-
provement using piccs in mdct cardiac imaging,” Med. Phys. 36,
pp. 2130–2135, 2009.

The first international conference on image formation in X-ray computed tomography 17

npack
Rectangle



Monte Carlo Simulation Approach to Estimating 
Patient Radiation Dose from MDCT Exams 

 
Michael McNitt-Gray, John DeMarco, Chris Cagnon, Adam Turner, Di Zhang 

David Geffen School of Medicine at UCLA 
Los Angeles, CA  90024 USA  

   
  Abstract- : X-ray CT now accounts for 50% of the medical 
radiation exposure to the population in the United States.  
Methods to estimate radiation dose and especially dose to 
radiosensitive organs are becoming even more important.  
Monte Carlo simulation methods have been used over the past 
few decades to estimate radiation dose to patients undergoing 
CT exams. The purpose of this work is to describe recent 
developments in Monte Carlo simulation methods. These 
methods include: (a) advances in the representations for 
MDCT source models, (b) patient models that represent 
anatomy more realistically as well as different size, age and 
gender models and (c) advances in modeling MDCT 
capabilities such as tube current modulation, dynamic 
collimation, etc.  All of these have advanced our ability to 
accurately estimate radiation dose to specific organs and 
assess the efficacy of various radiation dose reduction 
methods on actual patient radiation dose.  
 
 

I.    INTRODUCTION 
 
  Recent studies report that CT contributes 50% of the medical 
radiation dose to the United States population [1]. It has been 
suggested that the most appropriate quantity for assessing the 
risk due to diagnostic imaging procedures is the radiation dose 
to individual organs [2]. However, the standard dosimetry 
metric for CT is the Computed Tomography Dose Index 
(CTDI) which  is a calculated based on measurements made in 
cylindrical polymethyl methacrylate (PMMA) phantoms [3]. 
CTDI values are widely used for quality assurance and 
accreditation purposes, however, they are not intended to 
represent dose to any particular patient or, more importantly, 
to any particular organ.  
  To estimate organ doses, Monte Carlo simulation methods 
have been utilized in many previous efforts.  This approach 
was used in dosimetry studies performed by both the NRPB 
(Chilton, UK) [4] and the GSF (Oberschleissheim, 
Germany)[5], the results of which have been incorporated into 
software packages such as the ImPACT CT Patient Dosimetry 
Calculator (ImPACT, London, England)[6] and CT-Expo 
(Medizinische Hochschule, Hannover, Germany)[7]. These 
original studies were based on single detector row, non-helical 
scanners; however methods have been developed to extend the 
results to current, commercially available helical CT scanners. 
For example, a method to match new scanners to those 
originally simulated  based on physical measurements (such as 
CTDI)[6] was developed.  

  These original efforts also used geometric descriptions of 
patients and their radiosensitive organs, using either the MIRD 
Phantom [8] or modifications to make both male and female 
versions [9].   
  The purpose of this work is to describe recent developments 
in Monte Carlo simulation methods. These methods include: 
(a) advances in the representations for MDCT source models, 
(b) patient models that represent anatomy more realistically as 
well as different size, age and gender models and (c) advances 
in modeling MDCT capabilities such as tube current 
modulation, dynamic collimation, etc.  All of these have 
advanced our ability to accurately estimate radiation dose to 
specific organs and assess the efficacy of various radiation 
dose reduction methods on actual patient radiation dose.  
 

II .    DESCRIPTION OF MONTE CARLO MODELS 

 
A. Monte Carlo Simulation Software 
There are many Monte Carlo transport simulation packages 
available.  Most of the software packages used for CT 
dosimetry are either general-purpose Monte Carlo codes (such 
as MCNP or EGS) that can be used for neutron, photon, 
electron or coupled neutron/photon/electron transport, or they 
are modifications of these transport codes.  The simulation of 
photon transport includes incoherent and coherent scattering, 
photoelectric absorption with the creation of K and L shell 
fluorescent photons or Auger electrons and bremsstrahlung. 
These packages have detailed descriptions of photon cross 
sections and electron binding effects associated with Compton 
and Rayleigh scatter The photon transport model may create 
electrons but may also assumes that they travel in the direction 
of the primary photon and that the electron energy is deposited 
at the photon interaction site, creating a condition of charged 
particle equilibrium (CPE). Under conditions of CPE, the 
assumption that collision kerma is equal to absorbed dose is 
valid and a collision-kerma tally can be used for the absorbed 
dose calculations and can be based upon an energy fluence 
tally.. Energy fluence is converted to dose rate using the mass 
energy-absorption coefficients obtained by Seltzer and 
Hubbell (Hubbell and Seltzer 1995). 
 
B. Modeling the MDCT Scanner 
There are several aspects of the MDCT scanner that need to be 
modeled in some detail in order to obtain an accurate model of 
the CT source.  This includes: (a) scanner geometry, (b) x-ray 
spectra, (c) filtration, (d) collimation, (e) source movement 
and (f) any radiation dose reduction method such as tube 
current modulation, etc.  Scanner geometry includes 
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descriptions of source to isocenter distance and fan angle.  X-
ray spectra includes description of the photon fluence as a 
function of energy. These are sometimes obtained from the 
manufacturer or from some estimation software such as 
TASMIP [11].  The spectrum is typically represented as a 
cumulative density function because part of the simulation 
will be to select the starting energy of a photon using a 
random number generator.  
  Filtration includes representation of physical filtration, both 
the internal and external to the x-ray source. This includes any 
added filtration and the bowtie filtration used by each scanner.  
This is often proprietary information and is not readily 
available from manufacturers; however recent advances 
include the development of methods to estimate the effects of 
the bowtie filtration [12,13].  Collimation effects represent the 
pre-patient collimation provided by the scanner. This is 
represented by the actual measured radiation dose profile in air 
at isocenter (rather than nominal beam collimation). For 
MDCT and cone beam CT, this can range up to 160 mm 
nominal beam width [14].   
  MDCT scanners are operated in sequential axial, helical and 
cine (axial scan with no table movement) modes; therefore 
Monte Carlo simulations need to be able to accommodate each 
of these source motion schemes, including helical scans with 
pitch ranging from 0.2 up to 3.2.  Finally, recent technical 
developments specially targeted towards radiation dose 
reduction such as tube current modulation [15] and dynamic 
collimation [16].  
  
C. Object Models 
  This section describes several different objects that are 
typically used in Monte Carlo simulations.  The first set of 
objects are the cylindrical CTDI phantoms that are used in 
conventional dosimetry. These are often the basis for 
benchmarking Monte Carlo models.    The next level of model 
complexity is the. MIRD V anthropomorphic model, which , 
as described above, describes a standard patient model in 
terms of geometric descriptions of 27 radiosensitive organs.  
This model typically uses three basic materials; tissue, lung 
and bone.   
  Finally, voxelized models of patient anatomy are typically 
based on actual patient anatomy for a series of different 
patients. For example, the GSF family [17] contains eight 
models ranging from an 8 week old female (“Baby”) to an 
adult male (“Visible Human”).  For each model, radiosensitive 
organs are identified in voxelized models.  There are many 
other examples including the fetal models described in [18]. 

 
D. Simulating the Scan 
The detailed models described above allow researchers to 
estimate radiation dose to a specific patient from a specific 
MDCT scanner using a specific scan protocol.  The last step 
requires the user/researcher to describe the actual scan being 
simulated. This includes selection of parameters such as: 

1. Make and model of MDCT scanner 
2. Patient size, gender 

3. Anatomic region (e.g. head, neck, thorax, etc.), which 
in turn determines: 

a. beam on and beam off locations with respect 
to the patient model 

b. any anatomic region-specific filtration (e.g. 
head bowtie filter, body bowtie filter, etc.) 

4. Beam energy (kVp) 
5. Collimation(nominal and actual) 
6. Table movement (if any) including helical pitch 
7. Tube Current and rotation time 
8. Any other dose reduction method (tube current 

modulation, dynamic collimation, etc.) 
 
When detailed models of the scanner and patient are 
provided and detailed descriptions of the desired scans are 
provided, then estimates of doses to radiosensitive organs 
can be provided. Examples of these kinds of 
investigations include: (a) dose to specific organs for 
thoracic scans as a function of patient size [19], (b) dose 
to fetus from abdominal scans as a function of patient size 
[18] and (c) dose to breast and lung in female patients 
undergoing thoracic scans with tube current modulation 
[15].  
 

 
Figure 1 – Examples of voxelized models for fetal 
anatomy as described in [18] 
 

 
Figure 2 – Examples of tube current modulation results 
for a patient described in [15] 
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III .    DISCUSSION 

 
  The purpose of this work was to describe recent 
developments in the use of Monte Carlo simulations as a 
method to accurately estimate individual organ doses from 
MDCT exams. These methods can be applied for any scanner, 
patient, and protocol combination.  
  This has allowed important investigations into the estimation 
of dose to fetus for pregnant patients undergoing abdominal 
CT scans, the effects of patient size of dose to specific 
radiosensitive organs due to thoracic scans as well as 
investigations into the impact on dose reduction to 
radiosensitive organs from tube current modulation.   
  This approach and these investigations allow us to increase 
our understanding of the impact of MDCT scanning and 
radiation dose reduction technologies on dose to radiosensitive 
organs. This allows us to begin to make meaningful decisions 
about the use of CT, the efficacy of different radiation dose 
reduction technologies and to lay the foundation for accurate 
estimations of risk in the future.   
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  Abstract- In brain perfusion studies, the patients are scanned 
repeatedly at one location of the head over a short period of 
time to monitor contrast to wash in and wash out. This can 
result in very high radiation dose and it may cause 
deterministic effects, such as skin burn, or even cataract, if the 
eye lenses are covered in the x-ray beam. Skin dose and eye 
lens dose were estimated using Monte Carlo method with 
detailed patient model and accurate CT source models to 
simulate brain perfusion single axial scans using the widest 
collimation of 24x1.2mm and all the available kVps (including 
80kVp, 100kVp, 120kVp, and 140 kVp) for a Siemens 
Sensation 64 Multi-detector CT (MDCT) scanner at various 
scan locations. Meanwhile, CTDIvol was obtained to 
investigate how well it predicts eye lens dose and skin dose. 
The results showed that depending on the scan protocol, there 
is a high possibility that deterministic effects may happen 
when a high enough mAs/rotation and/or enough rotations are 
used. For example, for a 300 mAs/rotation scan at 120kVp, 75 
rotations would result in eye lens dose of 2Gy, and 62 
rotations would result in a maximum skin dose of 2Gy. 
CTDIvol overestimates eye lens dose by 20% to 30% and it 
overestimates skin dose by 40% to 60%. This study provides 
detailed information about radiation dose to eye lens and skin 
from CT brain perfusion examinations and it could help to 
improve the design of scan protocols. 
 

I.    INTRODUCTION 
 
  Radiation dose to patients continues to be a important 
concern to medical physicists and to the broader medical 
community as well. Radiation dose from CT exams has been 
identified as the largsest source of medical radiation exposure 
[1]. There has been greatly increased attention on the radiation 
dose from CT in the past few years.  
  The radiation dose received by patients from CT examination 
is usually relatively low (on the order of mGy) comparing to 
that from radiotherapy because of the lower energy of the x-
ray beam and lower current-time-product (mAs). Therefore, 
stochastic effect has been regarded as the primary concern in 
terms of the biological consequences from radiation dose 
introduced by CT examinations. However, the nature of some 
scanning protocols requires exposing an area for a 
considerable amount of time. For example, in brain perfusion 
studies, the patients are scanned repeatedly at one location of 
the head to monitor the contrast to wash in and wash out. This 
can result in very high radiation dose and it may cause 

deterministic effects, such as skin burn, or even cataract, if the 
eye lenses are covered in the x-ray beam. 
  Currently CTDI is the most widely used dose metric for the 
estimation of radiation dose from CT. But it represents the 
radiation dose to a homogeneous cylindrical phantom and 
does not necessarily predict the radiation dose received by 
patients. Monte Carlo based methods using realistic voxelized 
patient models is a much more accurate method for the 
estimation of radiation dose to individual organs. The purpose 
of this work is to accurately estimate the radiation dose to eye 
lenses and local skin tissues from CT brain perfusion studies 
for a patient, and investigate how well can CTDIvol predict 
these doses. 

 
II.   Material and Methods 

 
A.    Monte Carlo Method Based CT Scanner Model 
  A Monte Carlo particle transport package, MCNP eXtended 
v2.6 (MCNPX), which was developed at Los Alamos National 
Laboratory, was utilized to perform the simulations to estimate 
radiation dose deposition from CT. The simulations were 
operated in photon transport mode with a low-energy cutoff of 
1keV. Charged-particle equilibrium (CPE) was assumed so 
that all the secondary electrons deposit their energy at the 
photon interaction sites. 
  In this study, a 64-slice CT scanner system (Sensation 64, 
Siemens Medical Solutions, Forcheim, Germany) was 
modeled for all simulations using Monte Carlo-based 
methods. The models were based on previous work [2] and 
take into account the x-ray source spectra, beam filtration 
(including bowtie filter) and scanner geometry (focal spot to 
isocenter distance, fan angle, etc.) as provided by the 
manufacturer. For this scanner, the widest available beam 
collimation is 24x1.2mm (nominal beam width of 28.8mm). 
The actual radiation profile was measured using Optically 
Stimulated Luminescences (OSLs, CT Dosimeter, Landauer, 
Inc. Glenwood, Illinois) that were exposed in air at isocenter 
during a single axial scan using the 24x1.2mm nominal 
collimation. The OSL dosimeter was then sent to Landauer for 
reading. From the normalized radiation dose profile that 
resulted (a table of relative dose values as a function of z-axis 
location), the full width at half maximum (FWHM) of the dose 
profile was calculated to be 32.2 mm. This value was used as 
the measured beam width in the CT scanner model.  
  The source file of MCNPX was modified to model a Siemens 
Sensation 64 scanner such that axial scans with any clinical 
relevant kVp, mAs and collimation settings could be 
simulated. The pathway of the CT source in x, y, z was 
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explicitly defined for any scan given scan location and 
nominal collimation. The location of each emitting photon was 
then sampled from the pathway specified. The photon spectra 
for each selected kVp and descriptions of any beam filtration, 
including the bowtie filter, as well as the geometry were 
provided by the manufacturer. As in previous work [2], this 
model was validated and benchmarked using comparisons 
based on standard dosimetry (CTDI) measurements and 
corresponding simulations, which agreed to within 5%. 
 
B.    Patient Model 
  The GSF (now: Helmholtz Zentrum München) phantoms are 
a series of voxelized patient models with segmented individual 
organs [3]. Irene model was chosen from the GSF series of 
models to represent an average sized adult female. She has the 
age of 32 years, the weight of 51kg, and the height of 163cm. 
In order to incorporate each phantom into the Monte Carlo 
code for particle transportation calculation, the element 
composition and mass density of each organ is required. These 
values were derived from the ICRU 44 organ composition 
tables [4]. Of specific interest for this project was that both 
skin and lens of the eye were explicitly represented in this 
patient model and so radiation dose could be tallied in these 
voxels  
 
C.    Dose estimation for Eye Lenses 
  Under charged particle equilibrium condition the absorbed 
dose to each voxel is equivalent to the collision kerma in this 
voxel, which was calculated by multiplying the mass energy-
absorption coefficients with the energy fluence evaluated by 
MCNPX based on track-length estimation. Then the mean 
dose to eye lenses was estimated by averaging the dose to each 
voxel across all the voxels belonging to the eye lenses. The 
dose results were converted from MCNPX raw output 
(MeV/g/particle) to absolute dose normalized to tube current 
(in mGy/mAs) using normalization factors calculated from 
scan measurements in air and corresponding simulations in air, 
described in a previous publication [5]. 
 
D.    Maximum skin dose estimation 
  By defining the tally points at various locations, the radiation 
dose can be assessed anywhere in the model using the Monte 
Carlo method. In order to get the maximum skin dose, mesh 
tally feature was used to get 3D dose distribution in the patient 
model. Mesh tallies are composed of a 3D array of voxels in a 
high-resolution Cartesian-coordinate mesh structure. A 
MATLAB subroutine was created to map the matrix which 
represent the original voxelized patient model with the matrix 
of the 3D dose distribution to localize skin tissues. The 
maximum skin dose value in the 3D dose distribution matrix 
was identified as maximum dose of those voxels identified as 
belonging to the skin. The dose results were first divided by 
the density of the skin to convert the unit from 
MeV/cm3/particle to MeV/g/particle, then it was multiplied by 
the normalization factors to get absolute dose as described in 
II.C. 
 

E.    Simulation Experiments 
  For the experiments in this study, simulated brain perfusion 
single axial scans were performed using the widest collimation 
of 24x1.2mm and all the available kVps, including 80kVp, 
100kVp, 120kVp, and 140 kVp. It should be noted that 
although 140kVp is not usually used for brain perfusion scans 
in clinical protocols, the results could still serve as a reference 
to indicate the resulting radiation dose if 140kVp were used.  
  To investigate the effect of scan location on the dose to eye 
lenses, simulations were performed separately at 4 different 
locations as illustrated in Figure 1. The center of location 1, 2 
and 3 are 3.5 cm apart from one to the next, and they are all 
outside the region of eye lenses. The center of location 4 is 2.5 
cm apart from that of location 3, and the x-ray primary beam 
completely covers the eye lenses at this location. 
 

 
 
Fig. 1. Illustration of all 4 scan locations for brain perfusion single axial scans. 

The nominal beam width is 2.88cm. The center of location 1, 2 and 3 are 
3.5cm from one to the next. Location 4 is partially overlapped with location 3 

to completely cover the eye lenses. 
 
  After the eye lens dose and maximum skin dose were 
estimated on a per mAs basis for all the combinations of 
locations and kVps, total mAs were calculated under which 
the total dose would reach 2Gy using (1). Deterministic effects 
may occur at this level of radiation dose.  
 

          Total mAs = 2000(mGy) / eye lens dose (mGy/mAs)    (1) 
 

  Furthermore, to help the development and design of scan 
protocols, numbers of rotations to reach 2Gy were calculated 
for a typical scan protocol of 170 mAs/rotation, using (2). 
 

      Number of rotations = Total mAs / (170 mAs/rotation)    (2) 
 

  Finally, to investigate how well CTDIvol as reported on the 
scanner console can predict dose to eye lenses or skin, 
CTDIvol (mGy/mAs) were recorded for different kVps and 
multiplied by the total mAs calculated above that would result 
in dose of 2Gy to eye lenses or skin. The dose predicted by 
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CTDIvol was then compared to 2Gy to see if it overestimates 
or underestimates the real dose estimated by Monte  
Carlo simulations. 
 

III.   RESULTS 
 
A.    Dose to eye lenses 
  The simulated dose to eye lenses at all four locations and all 
four kVps is shown in Table I. The total mAs that would result 
in a dose to eye lens of 2 Gy, as calculated by (1), is shown in 
Table II. The number of rotations for a 170 mAs/mAs scan 
protocol that would result in 2 Gy of eye lens dose, as 
calculated by (2), is shown in Table III. CTDIvol calculated 
from the scanner on a per mAs basis for all four kVps are 
shown in Table IV, as well as the dose predicted by CTDIvol 
at location 4 (because the eye lenses are only covered at 
location 4). This is the multiplication of CTDIvol and total 
mAs as described in II.E. 
 
TABLE I. Simulated dose to eye lenses at all four scan locations and all four 

kVps on a mGy per mAs basis. 
Dose to eye lenses (mGy/mAs) 

 Location1 Location2 Location3 Location4 
80kVp 0.0002 0.0007 0.0025 0.0227 
100kVp 0.0006 0.0017 0.0058 0.0499 
120kVp 0.0011 0.0033 0.0106 0.0893 
140kVp 0.0018 0.0052 0.0167 0.1421 
 

TABLE II. Total mAs that would result in the dose to eye lenses reaching 
2Gy for all scan locations and kVps. 

Total mAs to reach eye lens dose of 2Gy 
 Location1 Location2 Location3 Location4 
80kVp 9694400 3066500 811600 87900 
100kVp 3482500 1187700 345700 40100 
120kVp 1791800 615200 189100 22400 
140kVp 1097800 382900 120000 14100 

 
TABLE III. Total number of rotations that would result in 2Gy eye lens dose 

for all scan locations and kVps for a 170 mAs/rotation scan protocol. 
Total number of rotations to reach eye lens dose of 2Gy 

 Location1 Location2 Location3 Location4 
80kVp 57026 18038 4774 517 
100kVp 20485 6987 2033 236 
120kVp 10540 3619 1113 132 
140kVp 6458 2252 706 83 

 
TABLE IV. CTDIvol collected from the scanner on a per mAs basis for all 
four kVps at location 4, as well as the eye lens dose predicted by CTDIvol 

 CTDIvol (mGy/mAs) Predicted dose (Gy) 
80kVp 0.0360 3.17 
100kVp 0.0750 3.01 
120kVp 0.1267 2.84 
140kVp 0.1920 2.70 

 
 
 
 
 

 
B.    Maximum skin dose 
  The same set of tables for the maximum skin dose at each 
scan locations for all four kVps are shown from Table V to 
Table VIII. This includes the simulated maximum skin dose 
on a mGy/mAs basis (Table V), total mAs to reach maximum 
skin dose of 2Gy (Table VI), total number of rotations to reach 
maximum skin dose of 2Gy for a 170 mAs/rotation scan 
protocol (Table VII), as well as maximum skin dose predicted 
by CTDIvol (Table VIII). 
 

TABLE V. Simulated maximum skin dose at all four scan locations and all 
four kVps on a mGy per mAs basis. 

Maximum skin dose (mGy/mAs) 
 Location1 Location2 Location3 Location4 
80kVp 0.029 0.028 0.028 0.029 
100kVp 0.061 0.058 0.058 0.060 
120kVp 0. 107 0.101 0.101 0.105 
140kVp 0.163 0.154 0.155 0.161 

 
TABLE VI. Total mAs that would result in the maximum skin dose reaching 

2Gy for all scan locations and kVps. 
Total mAs to reach maximum skin dose of 2Gy 

 Location1 Location2 Location3 Location4 
80kVp 67900 72000 72300 69000 
100kVp 32600 34500 34600 33100 
120kVp 18600 19800 19800 19000 
140kVp 12300 13000 12900 12500 
 

TABLE VII. Total number of rotations that would result in 2Gy maximum 
skin dose for all scan locations and kVps for a 170 mAs/rotation scan 

protocol. 
Total number of rotations to reach skin dose of 2Gy 

 Location1 Location2 Location3 Location4 
80kVp 399 423 425 406 
100kVp 192 203 204 195 
120kVp 110 116 117 112 
140kVp 72 76 76 73 

 
TABLE VIII. The maximum skin dose predicted by CTDIvol at all four scan 

locations and four kVps. 
Maximum skin dose predicted by CTDIvol (Gy) 

 Location1 Location2 Location3 Location4 
80kVp 2.44 2.59 2.60 2.49 
100kVp 2.44 2.59 2.60 2.49 
120kVp 2.36 2.50 2.51 2.41 
140kVp 2.36 2.49 2.48 2.39 
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IV.   DISCUSSION and CONCLUSION 

  In this work, we have used Monte Carlo simulations to 
investigate the radiation dose delivered to eye lenses and skin 
during brain perfusion studies and the results shows the 
possibility of deterministic effects. The threshold of 2Gy for 
deterministic effects was chosen quite arbitrary here, however, 
it has been reported in recent studies that the threshold for 
cataract may be as low as 1Gy or there is no threshold at all, 
based on statistical analysis of postoperative cataract cases 
among atomic bomb survivors [6]. 
  The eye lens dose and maximum skin dose from brain 
perfusion scans are highly related to the tube potential that 
was used. Higher kVp results in higher the dose even when the 
same mAs was used. This is reasonable because the x-ray 
intensity is proportional to the square of kVp, therefore there 
is larger amount of photons coming out of the x-ray tube at a 
higher kVp, even at the same mAs. 
  The dose to eye lenses for a 170 mAs/rotation scan protocol 
at 120kVp can be as high as 2Gy when 132 rotations are 
performed. This number of rotation can be easily achieved in 
two or three brain perfusion examinations. The dose to eye 
lenses is highly related to the scan location. When the scan 
range covers the eye lenses completely, radiation dose is an 
order of magnitude higher than the cases where the eye lenses 
are completely out of the primary beams. Therefore the 
contribution of scatter component to eye lens dose is fairly 
small. The skin dose for a 170 mAs/rotation scan protocol at 
120kVp can be 2Gy when 110 rotations are performed. Since 
skin is a fairly uniformly distributed organ, the scan location 
does not make much difference to the skin dose. 
  Depending on the scan protocol (mAs/rotation) that was used, 
the number of rotations to reach threshold beyond which 
deterministic effects may happen can be very different, for 
example, for a 300 mAs/rotation scan at 120 kVp, the number 
of rotations to reach 2Gy for eye lenses and skin could be as 
low as 75 and 62, respectively. This could be sometimes 
achieved in a single brain perfusion examination. Since the 
brain perfusion scan protocols are not regulated among 
different clinic sites, it is very possible that one single brain 
perfusion examination could cause cataract or skin burn. 
  Although CTDI is defined as radiation dose to a 100cm 
pencil ion chamber in homogeneous phantoms and it does not 
necessarily equal to dose delivered to patients, CTDIvol 
reported on the scanner console is often used as dose that a 
patient receive. From this study, it was shown that CTDIvol 
overestimates skin dose by 20% to 30% (Table VIII), and it 
overestimates eye lens dose by 40% to 60% (Table IV). It 
should be noted that in this study only one phantom and one 
scanner were modeled, therefore future work includes the 
investigation of other scanner models and other phantoms with 
different sizes to see if CTDIvol predicts patient dose better. 
In summary, CTDIvol can be used as a conservative predictor 
for skin and eye lens dose in brain perfusion studies, but 
physicists and physicians should be aware that it does not 
equal to patient dose. This study provides detailed information 
about radiation dose to eye lens and skin from CT brain 

perfusion examinations and it could help to improve the 
design of scan protocols. 
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  Abstract- : The overall purpose of this work was to develop a 

method to accurately estimate individual organ doses from 

MDCT exams that can be applied for any scanner, patient, and 

protocol combination. Feasibility studies have been performed 

that demonstrate: (a) that the use of CTDIvol measurements as 

organ dose normalization factors eliminate scanner-dependent 

dose differences across different MDCT scanners, and (b) the 

values of organ doses normalized by CTDIvol have a strong 

dependence on patient size. The first study implies a single 

CTDIvol to organ dose conversion coefficient exists for each organ 

which may be applied for any scanner. The second study 

illustrates that the values of CTDIvol to organ dose conversion 

coefficients scale with patient size, specifically the patient 

perimeter. This work suggests the feasibility of developing 

patient- and organ-specific CTDIvol to organ dose conversion 

coefficients that can be applied to any MDCT scanner to quickly 

and accurately estimate patient dose in the clinic.   

 

I.    INTRODUCTION 

 

  Recent studies report the radiation dose delivered to the 

United States population from computed tomography (CT) 

exams have significantly increased [1]. It has been suggested 

that the most appropriate quantity for assessing the risk due to 

diagnostic imaging procedures is the radiation dose to 

individual organs [2]. These findings suggest that a method to 

quickly and accurately determine the dose delivered to the 

individual organs of patients undergoing CT examinations 

would be extremely useful in a clinical setting. 

  Patient dose from CT scans are typically evaluated using the 

CT dose index (CTDI) which is a metric measured in a 

cylindrical polymethyl methacrylate (PMMA) phantom and is 

meant to represent the average absorbed dose, along the z-

axis, from a series of contiguous irradiations [3]. CTDI values 

are widely used for quality assurance and accreditation 

purposes, however, they are not intended to represent dose to 

any particular patient or, more importantly, to any particular 

organ.  

  Monte Carlo radiation transport techniques have made it 

possible to accurately estimate the radiation dose to 

radiosensitive organs in patient models from scans performed 

with modern Multidetector row CT (MDCT) scanners. 

However, it is not currently feasible to perform Monte Carlo 

simulations for patients on a routine clinical basis as the 

development of patient models requires image segmentation to 

properly define tissue boundaries [4].  

  The purpose of this work is to use Monte Carlo CT dosimetry 

simulations to develop a method to quickly and accurately 

estimate organ dose to any patient from any scanner. We  

 

hypothesize that organ dose can be obtained from a universal 

set of dose coefficients along with knowledge of a scanner’s 

CTDI and a patient’s size. This proposition will be explored in 

two phases: (a) first investigating the variance of scanner-

specific simulated organ doses normalized by CTDI 

measurements (organ dose/CTDI) across a range of 64-slice 

MDCT scanners for a single patient model to investigate the 

feasibility of a scanner-independent CTDI to organ dose 

conversion coefficient; and (b)  the size dependencies of CTDI 

to organ dose conversion coefficients will be explored by 

generating mean organ dose/CTDI values for a range of 

patient models and obtaining regression equations with patient 

size metrics as independent variables. Such equations would 

be useful for calculating patient-specific mean organ 

dose/CTDI values, which when used with scanner-specific 

CTDI measurements may be used to obtain scanner- and 

patient-specific organ dose values. 

 

II.    METHODS 

 

A. Organ doses normalized by CTDI in a single patient 

model 

    A previously presented Monte Carlo package [5][6] built on 

the MCNPX radiation transport code and modified to model 

specific MDCT scanner sources was used to simulate organ 

doses for this work. For this sub-study, organ dose was 

obtained using the Irene model from the GSF family of 

voxelized models, shown in Table I [7]. Helical CT exams 

were simulated for 64-slice MDCT scanners produced by the 

four major scanner manufacturers. For each scanner a 120 

kVp exam was performed using a pitch of 1, the widest 

possible collimation, and the largest possible bowtie filter. 

Scans were performed over the entire body (head to toe) in 

order to ensure that each organ was fully encompassed in the 

scan length (fully-irradiated). Organ doses were obtained in 

units of mGy/mAs, as described in [5].  

  For each scanner and protocol used in the organ dose 

simulations the CTDIvol value was measured using the 32 cm 

(body) CTDI phantom, also in units of mGy/mAs, using the 

standard techniques outlined in [3].  

  For each scanner simulation the resulting organ dose values 

were normalized by the corresponding CTDIvol measurements. 

The variation across scanners was calculated for both un-

normalized dose values (in mGy/mAs) and CTDIvol 

normalized dose values (unitless). Variance was calculated as 

the pcoefficient of variation (CoV), defined as the standard 

deviation divided by the mean of the organ dose and organ 
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dose normalized by CTDI values across scanners, and 

expressed as a percentage. 
TABLE I 

GSF FAMILY OF VOXELIZED MODELS 

 

 
 

 

 

Baby Child Visual Human Frank 

    

Golem Helga Donna Irene 

 

B. Patient size dependency of organ doses normalized by 

CTDI values 

    The organ dose simulation methods described in II.A were 

repeated using seven additional patient models, all from the 

GSF family of voxelized models shown in Table I. These 

models span a range of sizes, genders, ages, and body habitus. 

For this study the scan region was limited to the abdomen. For 

each model the abdominal scan range was defined from ~1 cm 

superior to the top of the diaphragm to ~1 cm inferior to the 

illiosacral joint. Simulations were again performed for four 

different 64-slice MDCT scanners to obtain dose (in 

mGy/mAs) to the radiosensitive organs in the abdomen. The 

resulting organ doses were normalized by the corresponding  

CTDI measurements and the average dose/CTDI value across 

scanners was obtained for each abdominal organ.  

  In order to characterize the size of each patient the perimeter 

of the central slice in the scan region for each patient was 

acquired in centimeters. For each abdominal organ, the mean 

dose/CTDI across scanners was plotted as a function of 

perimeter. Exponential regression equations were obtained in 

the form of: 

 mean organ dose/CTDI = A exp(B x perimeter)      (1) 

where unique A and B values exist for each organ. The 

correlation coefficient (R2) was also obtained for each organ.   

 

III.    RESULTS 

 

A. CTDI measurements 

  The CTDIvol measurements obtained with the 32 cm (body) 

CTDI phantom using a tube voltage of 120 kVp and the widest 

possible scanner collimation for each scanner are reported in 

Table II on a per mAs basis. This table shows that the CTDIvol 

varies considerably across scanners (including a factor of two 

difference between scanner 2 and 4) and the CoV across 

scanners was 34.1%. 

 
TABLE II 

CTDI MEASUREMENTS  

Scanner CTDIvol (mGy/mAs) 

1 0.063 

2 0.062 

3 0.089 

4 0.123 

CoV (%) 34.1% 

 

 

B. Absolute organ dose results for one patient model (Irene) 

 The organ doses (in mGy/mAs) obtained for Irene, described 

in section II.A, are plotted in Figure 1 for Scanners 1-4.  

 

 
Fig. 1. Un-normalized organ dose values in mGy/mAs to radiosensitive organs 

from 4 different 64-slice MDCT scanners 
 

  It can be seen from the plot that, for most organs, there is a 

considerable difference in dose values between some of the 

different scanners. For example, the dose to most organs from 

Scanner 4 is approximately twice that of Scanner 2. These 

organ dose variations are very similar to those observed in 

CTDIvol values and the CoV across scanners ranged from 

26.7% (for the adrenals) to 37.7% (for the thyroid), with a 

mean across all organs of 31.6%. 

C. Organ dose normalized by CTDIvol results for one patient 

model (Irene) 

The organ doses normalized by CTDIvol measurements 

(uniteless) obtained for Irene, as described in section II.A, are 

plotted in Figure 1 for Scanners 1-4.  
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Fig. 2. Organ dose normalized by CTDIvol measurement values to 

radiosensitive organs from 4 different 64-slice MDCT scanners 

  Qualitatively, it is clear that the points in Figure 2 converge 

much more so than the points in Figure 1. The mean CoV 

across all organs was 5.2%, with a minimum of 2.4% (for skin 

tissue) and a maximum of 8.5% (for the adrenals).  

D. Size dependency results for a range of patients 

undergoing simulated abdomen scans 

For each GSF patient model undergoing a simulated abdomen 

scan , the mean organ dose/CTDIvol across scanners is plotted 

as a function of the patient perimeter in figure 3. 

 
Fig. 3. Mean dose normalized by CTDIvol across scanners for each organ as a 

function of patient perimeter (in cm) 

  The plot suggests an exponential relationship between mean 

dose/CTDIvol across scanners for all organs except the small 

intestine. It should be noted that the small intestine was the 

only organ that was not fully encompassed in the scan range 

(partially-radiated) for each patient. Furthermore, the degree 

of partial-radiation varied from one GSF model to another (i.e. 

the percentage of the total small intestine included in the scan 

range was greater for the baby than it was for Irene).  

  The A and B coefficients derived from the exponential 

regression equations discussed in section II.B, which describe 

how mean dose/CTDIvol depends on patient perimeter, are 

presented in Table III. The correlation coefficient (R2), which 

quantifies the degree that the regression lines approximate the 

data points, is also presented. These results demonstrate the 

excellent correlation between organ dose and patient size, 

especially for fully irradiated organs.        

TABLE III 

A and B coefficients and R2 from exponential regression equations 

Organ A B R2 

Stomach 3.79 -0.0114 0.97 

Liver 3.83 -0.0121 0.98 

Adrenals 4.03 -0.0128 0.95 

Gall Bladder 4.01 -0.0117 0.95 

Kidney 3.97 -0.0125 0.99 

Pancreas 3.72 -0.0123 0.97 

Spleen 3.51 -0.0112 0.94 

Colon 3.24 -0.0106 0.94 

Small Intestine 3.36 -0.0127 0.62 

 

IV.    DISCUSSION 

 

  The overall purpose of this project is to develop a method to 

accurately estimate individual organ doses from MDCT exams 

that can be applied for any scanner, patient, and protocol 

combination. The work presented here was meant to serve as 

feasibility studies to test the hypothesis that organ dose can be 

obtained from scanner-independent CTDIvol to dose 

conversion coefficients and that these coefficients can be 

derived for patients of varying sizes.  

  The first sub-study, discussed in section II.A, was carried out 

in order to investigate the reduction in organ dose variance 

across different MDCT scanners when the dose values were 

normalized by CTDIvol measurements. The CoV for un-

normalized organ dose values across scanners ranged between   

26.7% (for the adrenals) and 37.7% (for the thyroid), with a 

mean across all organs of 31.6%. It is suspected that the major 

factors contributing to organ dose differences among scanners 

is discrepancies in x-ray energy spectra and filtration designs 

(especially the bowtie filters). The mean CoV value was 

similar to the 34.1% CoV across scanners of the measured 

CTDIvol values. This indicates that scanner-specific 

characteristics leading to organ dose differences may be 

reflected in CTDIvol measurements and, furthermore, that 

organ dose normalization using CTDIvol values may remove 

those differences across scanners.  

  After normalizing organ dose values with CTDIvol 

measurements the variation across scanners reduced 

considerably. The mean CoV across all organs was 5.2%, with 

a minimum of 2.4% (for skin tissue) and a maximum of 8.5% 

(for the adrenals). These results suggest that CTDIvol 

measurements do account for differences among scanners 

leading to organ dose variations and that, for a given organ, 

the mean dose/CTDIvol across scanners is within 10% of any 

The first international conference on image formation in X-ray computed tomography 27



individual dose/CTDIvol value. The implication of this 

conclusion is that the mean value can be used as a CTDIvol to 

organ dose coefficient that can be multiplied by any scanner’s 

measured CTDIvol value to obtain organ dose for that scanner. 

Of course, the data presented in this study is only valid for the 

particular patient (Irene) and scanner protocol (120 kVp, pitch 

1, widest collimation, large bowtie) for which it was 

generated. Furthermore, these coefficients are only pertinent to 

organs fully-irradiated in a head-to-toe scan. It would be 

necessary to generate protocol specific CTDIvol to organ dose 

coefficients for fully-irradiated organs in particular scans, such 

as thoracic, abdomen, or pelvic scans. 

    The second sub-study, discussed in section II.B, was 

performed in order to extend the proposed CTDIvol to organ 

dose estimation method to account for patients of varying size. 

The results indicate that, for fully-irradiated organs in a typical 

abdomen exam, CTDIvol normalized organ doses correlate well 

with patient size. Specifically, these values depend 

exponentially on patient perimeter, as shown in figure 3. Table 

III presents the A and B values for each organ generated by 

exponential regression techniques that can be applied, using 

equation 1, to obtain dose/CTDIvol values as a function of 

perimeter. The correlation coefficients listed in table III 

indicate that for all fully-irradiated abdominal organs the 

exponential functions are excellent approximations to the 

simulated data.  

  The small intestine, which was not fully encompassed in the 

scan regions for any of the patient models, indicated that this 

dose estimation approach may not be appropriate for partially-

irradiated organs. Instead, the method must be extended as 

radiosensitive organs including red bone marrow, bone surface 

(endosteal tissue), skin, and muscle will almost always be only 

partially irradiated. Future work will involve partitioning these 

tissues into “in-scan” and “out-of-scan” regions and separately 

calculating dose to these two regions for each organ. It is 

hypothesized that the “in-scan” portion will behave similar to 

the fully-irradiated organs in this study and that the “out-of-

scan” dose values will be very small.  

   

IV.    CONCLUSIONS 

 

    The work presented in this abstract represent the first 

feasibility studies in developing an organ dose estimation 

method based on scanner-specific CTDIvol values and patient-

specific size measurements. The finding that the CTDIvol 

metric reflects scanner characteristics that cause dose 

differences across scanners suggests that, for a given patient 

and fully-irradiated organ, the mean dose/CTDIvol across all 

scanners can be used as a universal (scanner-independent) 

CTDIvol to organ dose conversion coefficient. Furthermore, for 

fully-irradiated organs, the mean dose/CTDIvol values correlate 

well with patient size, specifically the perimeter of the patient 

taken at the center of the scan region.  

  In this work A and B coefficients were derived for fully-

irradiated organs for an abdomen scan that can be used with 

equation 1 and a patient perimeter in order to calculate a 

patient-size corrected mean dose/CTDIvol value. Then, with a 

knowledge of a particular scanner’s measured CTDIvol the 

organ dose value in mGy/mAs can be obtained. Finally, by 

multiplying by the mAs used in the scan protocol an organ 

dose in mGy can be estimated.  This process is displayed in 

figure 4. The results from these studies indicate that these 

organ dose estimates are accurate to within 10%, on average.   

 

User Inputs                 Calculated Values 

 

 
Fig. 4. Proposed Method for estimating scanner- and patient-specific organ 

dose values in mGy 
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Digital breast tomosynthesis with a straight-line
X-ray source in X-ray CT

Emil Y. Sidky1, Yuval Duchin1, Ingrid S. Reiser1, Xiaochuan Pan1, and Christer Ullberg2

Abstract—The adaptive-steepest-descent projection-
onto-convex-sets (ASD-POCS) algorithm is applied
to a digital breast tomosynthesis (DBT) system
employing a straight-line X-ray source trajectory.
This configuration along with the detector orientation
allows for decomposition of the 3D volume into a set of
2D planes for expensive operations such as projection
or back-projection. This decomposition is of particular
interest for iterative algorithms, where computational
effort is an important consideration. The ASD-POCS
algorithm is also tested on data sets with many ray
measurements each of which have a relatively high level
of noise.

I. INTRODUCTION

The XCounter DBT system presents two interesting
features from the point of view of image reconstruction
research, especially for iterative algorithms. First, it em-
ploys a photon counting detector which has no significant
noise other than that due to the counting statistics of the
detected photons. The practical advantage of this type
of detector is that the flux can be divided among many
measurements without paying a penalty of additional
electronic noise. Obviously, this capability provides a
challenge to iterative image reconstruction to be able to
fully utilize the information from the extra measurements
while minimizing the impact of the associated high noise
levels from the small number of photons detected in
each bin. Second, this DBT system employs a linear
X-ray source trajectory. Such a trajectory allows for a
decomposition of the reconstruction volume into a set of
planes, each of which contain the source trajectory and
measurements along one set of channels of the detector.
Such a volume decomposition can result in a substantial
improvement in terms of computation time.

In a previous work [1], we have described the ASD-
POCS framework for constructing image reconstruction
algorithms based on constrained minimization. The pur-
pose of this framework is to design iterative algorithms

1The University of Chicago, Department of Radiology MC-2026,
5841 S. Maryland Avenue, Chicago IL, 60637;2XCounter AB
Svärdvägen 11, SE-182 33 Danderyd, Sweden

with computed tomography (CT) in mind. In general,
X-ray tomographic modalities provide data with many
more counts than nuclear medicine imaging – currently
the main application of iterative image reconstruction.
As a result, the usual methods for regularizing images
may be too strong, or rough, for X-ray tomography. The
ASD-POCS framework is designed to allow finer control.
Within this framework, we investigated a practical algo-
rithm that can yield useful images with iteration numbers
on the order of ten. The application in Ref. [1] was to a
GE prototype DBT scanner that had fewer measurements
with lower noise than the present XCounter scanner. We
stress here that we make no comparison between the
scanners. Instead, one of the purposes of this work is
to try out the algorithm of Ref. [1] on a very different
data set, which has more measurements at the expense
of higher noise.

This abstract is organized as follows: in Sec. II the
XCounter configuration is discussed along with the
decomposition of the image volume, in Sec. III the
application of ASD-POCS to this system is described,
and in Sec. IV resulting images are shown from clinical
data.

II. SYSTEM CONFIGURATION AND VOLUME

DECOMPOSITION

A schematic of the XCounter DBT system is shown
in Fig. 1. With this configuration, the imaging volume
can be conveniently represented in a cylindrical grid with
the X-ray source trajectory as its axis as seen in Fig. 2.
The advantage of such a grid is twofold: (1) the image
reconstruction problem can be decoupled into a stack of
2D problems, and (2) such a geometry potentially allows
one to take advantage of magnification inherent in the
divergent beam projection. With the present arrangement,
resolution of the volume is not uniform. It is higher near
the source trajectory.

Aside from geometry, a major difference between
the current DBT device and “traditional” DBT is how
the X-ray illumination is divided up. DBT scanners
generally all illuminate the subject to a dose equivalent
to that of a mammogram. Our previous study in Ref. [1]
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X-ray source

48 detector slots

subject

Front view Side view

4240 samples at 60 micron intervals

X-ray source

4096 channels per detector slot

subject

Fig. 1. The X-ray source is mounted on a frame with 48 slot
detectors. Each slot can utilize up to four strips with each strip
comprised of a row of 1024 bins of dimension (60µm)2. The source-
detector assembly is translated linearly in 4240 steps of 60µm. In
effect each slot provides a projection consisting of a 4240 parallel
fans. Because the slots look back at the source from different angles,
they provide projections from views separated by 0.56 degrees,
ranging from -13.54 to 13.54 degrees. From the side view, it can
be seen that the X-ray illumination is a half-cone beam.

Side view

X-ray source

Reconstruction volume

ith radial plane

ith detector channel
Front view

parallel ray measurments
from jth detector slot

Fig. 2. Schematic of cylindrical volume used for image reconstruc-
tion. Theith radial plane contains the X-ray source trajectory and the
ith channel from each of the 48 slots. The radial samples indicated
by the light blue dots are arranged so that the samples from the
different radial planes can be grouped together to form planes parallel
to the detector plane. It is these parallel planes that contain the DBT
images that will be shown. The projection data for theith channel
can be organized as a set of parallel beam projections (shown are the
parallel rays for thejth slot) for theith radial plane, where each slot
contributes a different view angle.

used projection data sets with 11 views and 1800x2304
detectors at 100µm resolution. For the current study, the
system can provide 48 views and the equivalent detector
dimensions would be 4096x4240 at 60µm resolution.
The former system divides the X-ray intensity among
≈ 46 × 106 ray measurements, while the latter system
utilizes≈ 834× 106 ray measurements.

III. I MPLEMENTATION OF ASD-POCS

The algorithm developed for DBT, within the ASD-
POCS framework was presented in detail in Ref. [1],
including a pseudo-code. Here, we employ the same
algorithm aside from specifics related to the scanning
geometry. The algorithm is guided by the following
constrained, total variation (TV) minimization problem:

~f∗ = argmin‖~f‖TV subject to|X ~f − g̃|2 ≤ ǫ2, (1)

where~f represents the array of image voxel values;g̃ the
array of ray measurements;X, the system matrix, models
the forward projection of the discrete image array~f ; and
data-error toleranceǫ is a parameter of the optimization
problem. The norm‖ · ‖TV is the discretized version of
the following integral

∫

V
dr|~∇f(r)| over the continuous

image function. While the algorithm put forth in Ref.
[2] solves this optimization problem fairly accurately,
it requires too many iterations for the present DBT
systems, which have large data sets. Instead, the DBT
algorithm in Ref. [1] is designed to run in ten iterations.
Both algorithms alternate POCS (or ART), to enforce
the data consistency constraint, and gradient descent,
to minimize the image TV. The DBT version includes
back-tracking on the gradient descent part to insure that
each of these steps is close to the largest possible while
actually decreasing image TV.

The main controlling parameter for the ASD-POCS
DBT algorithm is the relaxation parameterβ on the
POCS, which is chosen in(0, 1]. Specifically, in the
POCS loop, the image is updated after processing each
ray measurementgj :

~f ← ~f + β ~Xj

gj − ~Xj · ~f

| ~Xj |2
, (2)

where ~Xj is thejth row vector ofX yielding an estimate
for the ray measurementgj . When β = 1, the image
estimate~f is projected to exact consistency with the data
measurementgj , and smaller values changes the image
estimate less. Because the gradient descent part of the
algorithm tries to take large steps which do not change
much in step-length,β is used to control the balance
between the POCS step and the gradient descent step.
The effect of smallerβ is to regularize the image more.
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Fig. 3. DBT images reconstructed by the ASD-POCS algorithm for
different values ofβ. The iteration number in each case was 10. The
gray scale for each image is [0:0.5].

The published DBT algorithm also included a parameter
p on the TV-norm that we do not investigate here. For
the results presented here,β is varied and the iteration
number is fixed at 10. We do not claim to solve Eq. (1)
with this algorithm, but the resulting images can be of
clinical utility.

Specific adaptations for the cylindrical geometry of the
present DBT scanner include a substantial acceleration
of the POCS-step. One iteration of POCS is performed
on each radial plane independent of all other radial
planes. This arrangement allows for the contribution
of each measurement ray to be computed much more
efficiently, because each ray is confined to a 2D plane.
Also, on the POCS iteration, a computing cluster can be
efficiently employed with each processing unit respon-
sible for a single plane. The gradient of the TV-norm
remains as a 3D computation, but its execution time is
negligible in comparison with the POCS-step. For the
present implementation simple finite differencing is used
directly on the cylindrical grid without accounting for the
coordinate change. Thus, we are not accurately modeling
the image gradient, but this difference does not impact
image quality of the resulting reconstructions.

IV. RESULTS

The application of the ASD-POCS DBT algorithm
to scanner data from the GE prototype appeared to be
successful in that the parameterβ could provide reason-
able control over the trade-off between image noise and
resolution. Here, we investigate this algorithm on a single
data set from the XCounter system, which has many
more measurements but more noise-per-measurement.
The reconstruction volume, as stated earlier, lies on
cylindrical grid. The radial sampling is adjusted so that
planes parallel to the compression paddle lie on the grid,
see Fig. 2. The parallel resolution is the same as the
detector, while the radial resolution is selected so that

iter = 5

iter = 10

iter = 15

iter = 20

Fig. 4. DBT images from a basic implementation of EM with
no explicit regularization. Regularization is achieved only through
iteration truncation. The gray scale for each image is [0:0.5].

the parallel planes are spaced 1 mm apart. A total of
100 parallel planes comprise the volume.

A sequence of images are shown in Fig. 3 for different
values of β through a section of breast that contains
a mass. For these results, only ten iterations of ASD-
POCS were performed. As can be seen, theβ parameter
provides an effective algorithm control for image regu-
larization. At the smallest values ofβ, the speckle noise
is almost completely smoothed. Asβ increases the image
sharpness improves, but the speckle noise becomes more
apparent.

For comparison, the same data set is reconstructed by
a basic implementation of the expectation maximization
(EM) algorithm. This algorithm updates the image mul-
tiplicatively with the following update step:

~f ← ~f





XT
(

g̃/X ~f
)

XT 1̃



 , (3)

where 1̃ symbolizes a data array filled with ones. The
transpose of the system matrixXT represents back-
projection. We note here that for the present EM im-
plementationXT is the true transpose ofX, which
we use in order to preserve resolution. As an aside,
EM is often implemented with a “ray-driven” forward
projector and a “pixel-driven” back projector in order
to remove conspicuous artifacts [3], but the use of
mis-matched projectors, here, will compromise image
resolution. Image regularization is achieved here with
EM only by truncation of the iteration number. Iteration
to convergence leads to the maximum likelihood image
estimate, but such an image will be too noisy. Earlier
iterations, however, can be of clinical use. In fact, the
image reconstruction algorithm used for the GE scanner
prototype at Massachusetts General Hospital (MGH)
employs EM with 10 or fewer iterations [4].

The results of this basic EM implementation are
shown in Fig. 4. As expected, the earlier iterations
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yield smoother images where noise is washed out but
so are some details of the underlying structure. As the
iteration number increases more structures are apparent,
but even by iteration 20, when the noise levels are
quite noticeably higher, the image sharpness is not as
high as the ASD-POCS results forβ = 0.1 or 0.2.
Such a comparison, however, is only meant to place
some kind of context for the ASD-POCS algorithm.
The EM implementation could possibly be improved by
introducing Gibbs smoothing [5], where the TV norm
could be introduced as an edge-preserving regularizer
[6]. But our experience is that such regularization is
difficult to control for underdetermined systems such
as DBT. Images become blurred rapidly with modest
values of the regularization parameter, and smaller values
require the algorithm to be run to high iteration numbers.

V. D ISCUSSION

In this abstract we have presented results on DBT im-
age reconstruction by ASD-POCS for a data set acquired
on the XCounter DBT scanner, which incorporates a
photon counting detector. This data set is interesting
to test reconstruction algorithm on, because it divides
the dose amongst an order-of-magnitude more detection
channels than most other DBT systems. As a result, this
data set is at one end of an extreme in terms of having a
high-noise level and, on the other hand, high-resolution
measurements.

From a technical point-of-view this particular scanner
is interesting because of the straight-line scanning trajec-
tory. This geometry allows for a cylindrical decomposi-
tion of the reconstruction volume that can substantially
improved algorithm efficiency. We have implemented
this non-standard grid in the present version of ASD-
POCS. This non-standard grid would also allow for full
utilization of the magnification factors of the diverging
X-ray beam.

The results of the ASD-POCS image reconstruction
appear promising. Even though only ten iterations were
used, the parameterβ appears to effectively control the
trade-off between image-resolution and image-noise. At
the conference, we will present results from other data
sets taken with the XCounter scanner, showing perfor-
mance on the challenging task of micro-calcification
imaging. Furthermore, quantitative metrics will be de-
veloped that summarize resolution and noise-level. Com-
parisons with transmission-EM, which may have some
advantage for high-noise data sets with photon counting
detectors, will also be shown.
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Abstract— Recently, there has been great interest in imaging the breast with a dedicated cone-beam CT scanner. This new imaging 
modality can provide 3D visualization of breast tissue without the structural overlap of breast tissue that hinders conventional mammography. 
Although great progress has been made in the development of dedicated flat-panel CT breast imaging, there are a number of important questions 
related to the application of these systems that should be addressed before they can be successfully used for routine clinical imaging. One of the 
primary concerns is how the rather large scattered radiation component affects the resulting image quality.  In this study, we use computer 
simulation to investigate the degradation in microcalcification detection accuracy with and without the presence of scattered radiation. It was 
observed that for the imaging parameters studied in this simulation, scattered radiation introduced a significant penalty for the task of detecting 
small microcalcifications, with a difference in sensitivity of 15.6%.  

  

I.  INTRODUCTION  
Although x-ray mammography has saved many lives and is 
considered the imaging modality of choice for early 
detection of breast cancer, it is far from perfect. One of the 
limiting problems with the conventional method for 
mammography is that the recorded image represents the 
superposition of a three-dimensional (3D) object onto a two-
dimensional (2D) plane. Thus although breast compression is 
typically performed, normal anatomical structure like the 
parenchymal tissue can combine with useful diagnostic 
information (e.g., a tumor) in such a way as to impede 
visualization and reduce lesion detectability. Although x-ray 
mammography has saved many lives and is considered the 
imaging modality of choice for early detection of breast 
cancer, it is far from perfect. One of the limiting problems 
with the conventional method for mammography is that the 
recorded image represents the superposition of a three-
dimensional (3D) object onto a two-dimensional (2D) plane. 
Thus although breast compression is typically performed, 
normal anatomical structure like the parenchymal tissue can 
combine with useful diagnostic information (e.g., a tumor) in 
such a way as to impede visualization and reduce lesion 
detectability. 

Recently, there has been great interest in dedicated, 
cone-beam flat-panel breast CT imaging of the breast. In 
addition to our group at University of Massachusetts, a 
number of other academic groups are currently studying 
flat-panel CT breast imaging (CTBI) (Boone, Delson et al. 
2001; Chen and Ning 2002; Tornai, McKinley et al. 2005; 
Yang, Kwan et al. 2007; Kalender 2009). Although progress 
has been made in investigating the feasibility of dedicated 
flat-panel CTBI, there are a number of important questions 
related to the application of these systems that should be 
addressed before they can be successfully used for routine 

clinical imaging. One of the primary concerns is how to 
reduce the degrading effects of the rather large scattered 
radiation component in the resulting images. 
 (Siewerdsen and Jaffray 2001) have reported that the 
measured detected scattered radiation with flat-panel cone-
beam CT imaging increases with increasing cone angle, 
leading to image artifacts, a reduction in image contrast, and 
quantitative errors in measured CT numbers.  (Kwan, Boone 
et al. 2005) have measured scatter properties on a prototype 
CT breast imaging scanner and reported scatter-to-primary 
ratios of up to 100% (depending on breast size). They 
conclude that scattered radiation in CTBI would likely 
impact image quality. Our group has also evaluated the 
characteristics of scatter using both experimental 
measurements and Monte Carlo simulation studies (Chen, 
Liu et al. March 2009) of a dedicated CTBI system and 
confirmed the large scatter component reported by Kwan et 
al. Based on these characterization studies, it appears as if 
scattered radiation can have important effects on image 
quality in flat-panel CTBI. If this is the case, it will be 
necessary to develop methods for reducing the scatter in 
CTBI. 

To maximize the differentiation between malignant 
and benign lesions and thus improve the specificity of lesion 
analysis (with either non-contrast CTBI or contrast-
enhanced CTBI), it is important to accurately estimate the 
CT number within suspected lesions. To date,  no 
comprehensive studies using dedicated flat-panel breast CT 
systems have been conducted to analyze quantitative CT 
numbers that might have predictive value in assessing breast 
cancer. However, (Miyake, Hayakawa et al. 2005) have 
imaged the breast with a conventional CT scanner to 
examine lesion CT number, and to determine its’ value for 
lesion analysis. Miyake et al reported a distribution of CT 
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values for both malignant (n=154 lesions) and benign (n=22 
lesions) lesions that were studied, suggesting that a cutoff of 
60 HU would provide good discrimination. This study was 
performed with a conventional CT scanner, where scattered 
radiation is much less of a problem. However, dedicated 
cone-beam CTBI systems have a larger scatter component 
due to the un-collimated large radiation field (up to 100% 
scatter-to-primary ratio). Scatter causes a “cupping artifact” 
in the reconstruction that results in the CT number of lesions 
to be spatially (within the breast) dependent. In addition, 
due to scatter the lesion CT number will be patient 
dependent, i.e., the lesion CT number will vary with breast 
size and shape. Because of this variability, scatter in flat-
panel cone-beam CT can broaden benign and malignant CT 
value distributions, thus making lesion differentiation 
analysis more difficult.  
 It is well known that the detection of erroneously 
positioned scattered x-rays can degrade lesion contrast and 
signal-to-noise ratio (SNR) in CT imaging (Macovski 1983; 
Endo and Tsunoo 2001). Maximizing SNR in CT breast 
imaging is important for the accurate detection of masses as 
well as smaller microcalcifications. Although CTBI 
provides a superb portrayal of lesion morphology, some 
masses visualized in CTBI have poor SNR due to the low 
contrast between tumors and surrounding fibroglandular 
tissue for the energy range used in breast CT (40-80 kVp). 
This low contrast was reported many years ago by (Johns 
and Yaffe 1987) in a comprehensive study evaluating the x-
ray absorption properties of normal and neoplastic breast 
tissue. Because of the inherent low contrast between lesions 
and normal fibroglandular tissue, it is especially important 
to reduce the additional contrast reduction caused by scatter. 

Another degrading effect of scatter measured in CTBI 
is reduced microcalcification detection accuracy. The 
visualization of microcalcifications is very important for the 
accurate detection of ductal carcinoma in situ (DCIS). With 
conventional mammography, 90% of DCIS is identified on 
the basis of suspicious microcalcifications (Dershaw, 
Abramson et al. 1989). Since 14-50% of all DCIS 
eventually becomes invasive (Kopans 1998), detection of 
DCIS is important and can contribute to a decreased breast 
cancer mortality rate. In this study, we use computer 
simulation to investigate the degradation in 
microcalcification detection accuracy with and without the 
presence of scattered radiation. We hypothesize that 
reducing the large scatter component in tomographic breast 
imaging can improve detection of microcalcifications. If this 
hypothesis is true, then reduction of scatter would most 
likely improve the detection and diagnosis of breast cancer.  
 

II. METHODS  
 

To evaluate how scatter can affect detection accuracy 
of microcalcifications in CTBI, we performed a computer 
simulation study. Simulation is a powerful methodology for 
assessing the effect of scatter on image quality, because it is 

straightforward to generate simulated projection 
measurements with and without including scattered x-rays. 
For a number of years now, our group has been developing a 
computer simulation model for cone-beam CTBI (Vedula, 
Glick et al. 2003; Didier, O'Connor et al. 2009). This C++ 
language software models CTBI using a CsI based 
amorphous silicon flat-panel detector.  Three stages are 
involved in simulating each system: 1) modeling the x-ray 
spectra, and scaling the x-ray fluence to provide the 
appropriate radiation dose, 2) determining the x-ray 
transmission through the breast phantom, and 3) modeling 
the signal and noise propagation through the CsI based 
detector. To model the scatter distribution incident on the 
detector, very long (i.e, with minimal quantum noise) Monte 
Carlo simulations were run for varying x-ray energies using 
the Penelope software [ ], and then the spatially dependent 
scatter-to-primary ratio (SPR) for each x-ray energy in the 
spectra were formulated. This SPR distribution generated 
from Monte Carlo simulation was then used in conjunction 
with the primary x-ray projection (generated using ray-
tracing for each 1 keV energy interval) to estimate the 
scatter x-ray fluence incident on the detector. 

Using this methodology, projection data were formed 
with and without scattered radiation of a 16 cm diameter 
cylindrical breast object with embedded spherical 
microcalcifications of size 360 microns. The x-ray 
absorption properties for the microcalcifications were 
modeled as hydroxyapatite. The background cylinder was 
modeled as a mixture composition of 99% fibroglandular 
tissue, and 1% adipose tissue. Although somewhat 
unrealistic, this composition was selected because it models 
a very dense breast, and makes for a challenging detection 
task. Microcalcifications embedded in less dense tissue (i.e., 
adipose tissue) would be easier to detect, however, most 
DCIS is found in more dense glandular tissue. Micro-
calcifications were randomly placed at positions in a 5 x 5 
grid (i.e, at each of the positions in a 5 x 5 grid, a “coin flip” 
determined whether the calcification was present or not)(see 
Figure 1). The exposure technique modeled was  a 50 kVp 
tungsten anode spectra (with 2 mm Al filter), providing a 
mean glandular dose of 12 mGy. The simulation modeled 
the UMass bench-top CTBI prototype system using a Varian 
PaxScan 2520 with 127 µm pixel size and 2x2 binning on 
the readout, with the collection of 300 projection views. A 
800 µm x-ray focal spot was modeled. Reconstruction was 
performed with Feldkamp’s filtered backprojection 
algorithm (Feldkamp, Davis et al. 1984).  

Three observers (medical physicists) were asked to 
indicate whether a calcification was present or absent at 
each of the 5 x 5 locations indicated by grid lines 
demonstrating possible locations (see Fig. 1).  Prior to the 
reader experiment, a training session was conducted in 
which the observer viewed 50 microcalcifications (i.e., two 
5 x 5 clusters) for each case, followed by a presentation of 
the true calcification locations. After the training session, 
each observer viewed 100 microcalcifications (i.e., four 5 x 
5 clusters) for each case (scatter or no scatter). Shown in Fig 
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1 is one realization of calcifications randomly positioned on 
a 5 x 5 grid. Fig 1a shows the true locations of the 
microcalcifications for this realization (this is a 
reconstruction with very high dose 1000 mGy), and Figs 1b 
and 1c show simulated reconstructions with, and without 
scatter.  

 

III. RESULTS AND DISCUSSION 
For the simulation without scatter, three observers 

performed with a mean sensitivity of 83.6% (6.8%) (the 
standard deviation is reported in parenthesis) and average 
specificity of 98.1% (1.9%), whereas for the simulation with 
scatter, average sensitivity was 68.0% (7.4%) and average 
specificity was 94.9% (3.9%). In summary, it was observed 
that for the imaging parameters studied in this simulation, 
scattered radiation introduced a significant penalty for the 
task of detecting small microcalcifications, with a difference 
in sensitivity of 15.6%.  

It is expected that similar performance differences 
would be observed for smaller microcalcifications 
embedded in less dense tissue. We plan to perform 
additional observer studies following the methods above to 
evaluate performance with different density backgrounds. 

Detection of microcalcifications is very important for 
the accurate detection of ductal carcinoma in situ (DCIS). 
With conventional mammography, 90% of DCIS is 

identified on the basis of suspicious microcalcifications 
(Dershaw, Abramson et al. 1989).  The results from this 
preliminary study suggest that scattered radiation in breast 
CT can introduce a significant penalty in terms of 
microcalcification detection accuracy. This result provides 
motivation for the development of techniques for reducing 
the effect of scatter in breast CT. These techniques could 
include such approaches as the development of new anti-
scatter grids, or the development of new software based 
scatter compensation methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
       (a)       (b)                                                (c) 
 
Fig 4.1. Example reconstructions of microcalcifications used for the observer study described herein. (a) shows a reconstruction at 
very high dose (essentially noise-free), (b) shows a CT  reconstructed slice with x-ray scatter included in the simulation, and (c) 
shows a CT reconstructed slice without scatter modeled in the simulation.  Observers were asked to record whether a calcification 
was present or absent at each location indicated by the intersection of the hash marks on the top and right sides. Each image is 
displayed using thresholding with the maximum and minimum pixel value. 
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Abstract—Preclinical imaging has become an important area of 

research in radiology. The focus of this work is on the 
development of 4D Micro-CT for functional cardiopulmonary 
imaging in the mouse. Sampling and reconstruction methods for 
4D cardiac and perfusion imaging are presented. A dual 
tube/detector micro-CT system is used for image acquisition with 
retrospective gating. We achieve 4D cardiac micro-CT imaging 
with isotropic voxels of 88 microns and 10 ms temporal resolution. 
The reconstruction methods involve a point spread function 
deconvolution or fast iterative algorithms based on total variation 
implemented on a graphic processor unit. Perfusion studies are 
based on the use of multiple injections delivered via tail vein. We 
demonstrate 4D lung perfusion images in the mouse at 88 microns 
and 1.38 sec temporal resolution. The radiation dose associated 
with the proposed methods is in the range of typical micro-CT 
dose (<0.2 Gy). The 4D micro-CT imaging presented here can be 
applied in high throughput longitudinal studies and has 
immediate applications in a wide range of applications in drug 
safety and cardiopulmonary phenotyping. 
 

I. INTRODUCTION 
Clinical imaging tools (CT,MRI and ultrasound) for human 

cardiopulmonary morphology and function are well developed. 
But there are considerable challenges in scaling these 
modalities to the temporal and spatial resolution required for 
the mouse, since a murine heart is only about 5 mm in diameter 
and can beat up to 600 times/minute. To date, the most 
frequently applied imaging modalities in murine models of 
cardiovascular disease are echocardiography and magnetic 
resonance imaging (MRI). The advantages of cardiac MRI 
include its tomographic nature, high spatial and temporal 
resolution and good soft tissue contrast. However, small animal 
MR studies are expensive, complex, and time-consuming. 
Many studies have therefore utilized echocardiography, at the 
expense of sensitivity. Echocardiography is very fast but 3D 
measurements are model based and very user-dependent. We 
were the first to demonstrate cine cardiac micro-CT[1]. Our 
initial method used prospective gating and was therefore 
somewhat slow in sampling. Other groups have performed 
cardiac micro-CT studies in mice using slip-ring flat panel 
based CT[2]. Recently, we have extended our dynamic imaging 
to include perfusion in the rodent[3]. The method involved an 
invasive jugular vein catheter that made longitudinal studies 
difficult. The focus of this work is to present our novel 
integrated Micro-CT solutions for 4D imaging in the mouse. 
The new developments address previous limitations. Sampling 
and reconstruction methods for fast high throughput 4D cardiac 
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and perfusion micro-CT are presented. Cardiac micro-CT 
imaging is achieved via retrospective gating and supported by 
graphics processing unit (GPU) for fast reconstruction. 
Perfusion studies are based on the use of multiple injections 
delivered via tail vein. 

II. DUAL TUBE/DETECTOR MICRO-CT SYSTEM  
We  use a dual tube/detector micro-CT system that we have 

developed explicity for these studies [4] and novel strategies in 
gating/sampling/reconstruction adapted for this hardware. 

The x-ray tubes and the detectors are arranged orthogonally. 
A description of the components of this system follows (see 
Fig.1). The system involves:  

-2 G-297 x-ray tubes (Varian Medical Systems, Palo Alto, 
CA) with 0.3/0.8 mm focal spot size 

-2 Epsilon High Frequency X-ray generators produced by 
EMD Technologies (Quebec, Canada).  

-2 CCD based detectors with a Gd2O2S phosphor 
(XDI-VHR 2 Photonic Science, East Sussex, UK) with pixels 
of 22 microns which are typically binned to 88 microns.  

The sampling is controlled by a sequencing application 
written in LabVIEW (National Instruments). We use pulsed 
x-rays (80 kVp, 70mA, 10 ms per exposure). The dual 
tube/detector configuration acquires images with a sampling 
rate of 20 projections/sec and projections from the two imaging 
chains can be combined in a single reconstructed volume[5].   
 

 
Fig. 1.  A dual tube/detector micro-CT system in a specimen rotate geometry.  

III. CARDIAC MICRO-CT  
 

4D Cardiac micro-CT requires the use of contrast agents, a 
gating strategy and appropriate post processing and image 
reconstruction. To provide the necessary blood/tissue contrast 
differences we use a liposomal blood pool contrast agent 
containing 100 mg I/ml and delivered via a tail vein catheter[6] 
in a dose of 0.2 ml/25 g mouse.  

4D micro-CT for Small Animal Imaging  
Cristian T. Badea, Samuel M. Johnston, Yi Qi, G. Alan Johnson  
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A. Retrospective Gating 
To provide cardiac images, a gating strategy incorporating 

information on respiration and heart motion is required. For 
high throughput 4D imaging, we have selected retrospective 
gating. The respiratory and ECG signals are recorded together 
with the exposure time and projection angles and used 
post-sampling in a retrospective gating strategy (Fig.2). We use 
a nose cone through which the animals freely breathe a mixture 
of air and isoflurane for anesthesia. Therefore, we avoid the 
intubation/ventilation approach used previously  ensuring 
easier, faster set-up and higher throughput. This facilitates 
longitudinal studies, where repeated endotracheal intubation 
may be traumatic to the animals. Respiration information is 
obtained by a pneumatic pillow coupled to a pressure 
transducer that detects chest motion. ECG pads placed on the 
paws of the animals are used to detect heart motion. The signals 
are processed using a Coulbourn Instruments (Allentown, PA) 
LabVIEW (National Instruments, Austin TX) system. We 
collect 1800 projections over ~ 90 seconds. Two scanning 
protocol are possible: a single slow rotation over only 94o 

rotation (due to the two orthogonal imaging chains the 
complete 180o + fan angle) or multiple fast rotations over 360o . 
The total radiation dose for a study is approximately 0.2 Gy. 
Post-sampling, the recorded ECG signal is used to assign 
projection images to their respective phase in the cardiac cycle. 
The clustering process is implemented in MATLAB (The 
MathWorks, Natick, MA) and starts by detecting the R peaks in 
the ECG signal. Next, each projection is registered with the 
ECG signal by finding the closest two R peaks to the projection 
sampling time. Each R-R interval in the ECG cycle is divided 
by the number of temporal intervals (each equal to 10%). The 
respiration signal is used to eliminate those projections 
associated with large respiratory motion. 

 
Fig. 2. Fast sampling is achieved via retrospective gating. The sampling 
sequence involves recording of the respiration, ECG signals as well as the 
sampling time and projection angles. Vertical lines display the sampling events. 
Data is acquired with a combined sampling rate of 20 projections/sec ( due to 
the two imaging chains) during a continuous rotation. 
 

B. Reconstruction  
Sampling via retrospective gating challenges the traditional 

reconstruction. Both the irregular angular distribution of 
projections (represented as radial lines in Fourier space) 
associated with retrospective gating and their relatively low 
number (required to limit the dose)  affect the image quality and 
introduce streaking artifacts and noise when using the 
analytical reconstruction algorithms, such as Feldkamp’s[7].  In 

Fig.3, we illustrate this problem via simulations based on the 
dynamic Moby mouse phantom[8].  

 
Fig.3. Retrospective gating is fast but its associated irregular angular 
distribution of projections creates streaking artifacts using FBP algorithms. Our 
solution is given either by a Point Spread Function (PSF) deconvolution or 
iterative CT algorithms using total variation implemented on GPU. 
 
 

Our first approach is based on deconvolution with a Point 
Spread Function (PSF). It is generally accepted that 3D cone 
beam reconstruction can be approximated as a linear, 
shift-invariant process. Therefore, a reconstructed volume F  
can be expressed as a convolution in image space of the true 
volume T  with the PSF P  of the reconstruction algorithm. 
Mathematically, this is expressed as T ⊗ P = F . In the Fourier 
domain, the convolution corresponds to multiplication: 
ℑ T{ }ℑ P{ }= ℑ F{ } . T  can be obtained by dividing the 
Fourier transform of the original reconstructed volume by the 
Fourier transform of the PSF and then taking the inverse 
Fourier transform of the result: T = ℑ−1 ℑ F{ } ℑ P{ }{ } . In 
practice, a PSF for a given algorithm is obtained by 
constructing a volume containing a single non-zero point at its 
center, simulating cone beam projections with the same 
sampling geometry and set of angles as the cardiac phase to be 
reconstructed, and reconstructing the point volume with the 
algorithm. The deconvolution approach works because the PSF 
volume is affected by the same artifacts as the reconstructed 
image. Some additional processing is needed in the Fourier 
domain to prevent singularities caused by the division. An 
example of a micro-CT images of a C57BL/6 mouse 
reconstructed via PSF deconvolution are shown by Fig. 4. The 
voxel size is 88 microns and the temporal resolution is 10 ms. 

As an alternative to PSF deconvolution we use iterative 
algorithms for cone beam CT reconstruction based on 
sparseness prior. In particular, minimum total variation (TV) 
is implemented as the sparseness prior[9]. The TV algorithm is 
implemented using a sparseness transform. The 3D TV term of 
an image f, in this work is defined as follow: 
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Fig.4. The same axial slice reconstructed during nine different cardiac phases. 
A PSF deconvolution approach was used. The images show no streaking 
artifacts. 
 

( )
1
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x y zl

f f dxdydz f f f dxdydzϕ = ∇ = ∇ + ∇ + ∇∫ ∫
 where φ takes the finite difference of the 3D image and || . ||l1 
takes the l1 norm of the transform coefficients. The 
reconstruction problem is treated as an optimization problem 
and solved by minimizing a cost function that will contain two 
terms corresponding to: 1) data fidelity i.e. the measure of 
agreement between the reconstructed image and the projections 
acquired and 2) the TV-norm that will account for a solution 
with sparseness representation. The nonlinear conjugate 
gradient (CG) method is used to solve the optimization problem 
iteratively. We have also investigated the use of a prior 
provided by reconstruction using Feldamp’s algorithm using all 
projections acquired retrospectively or a prospectively gated 
set, if available. This fp image prior displays low noise and high 
image quality, but contains no information on the particular 
cardiac phase that we wish to reconstruct. Formulated as a 
constrained optimization problem we solve for f: 

( ) ])(min[
122111 llp fff ϕμϕμ +−  subject to bAf =  

where 1μ  , 2μ  are regularization factors, A is the projection 
matrix and b the projections. The cost function forces the 
selection of a solution f that should be sparse and its difference 
to the prior should be also sparsely represented.  

 
(A) (B) 

Fig.5. Comparison between FBP (A) and TV-CT (B) reconstructions using 
only 95 retrospectively- gated projections. 

 
Fig.5 illustrates the effectiveness of the TV-CT (after 5 

iterations) compared to a FBP reconstruction when only 95 
projections with irregular angular distributions were used.  

Both PSF deconvolution and TV-CT are computationally 
demanding. We address this problem by using a Graphics 
Processing Unit (GPU), which consists of several hundred 
processors capable of performing the same function in parallel. 

This architecture is ideal for performing backprojection, 
reprojection, and construction of the 3D TV gradient, in which 
the same memory and arithmetic operations must be performed 
over every voxel in the volume or every pixel in the projection 
images. Based on recent tests, the GPU enables acceleration of 
the bakprojection operation on the order of 300× compared to 
CPU implementations. To exploit this acceleration while 
minimizing transfers between disk and memory and remaining 
flexible in our choice of algorithms, we have built a 
client-server reconstruction framework. The server runs 
persistently in the background, maintains large arrays 
containing the projection and reconstruction data, and performs 
computationally demanding tasks on the GPU, as well as other 
arithmetic and utility functions on the CPU. The server receives 
instructions from clients via sockets, and the clients can be 
created dynamically from Matlab, allowing us to implement 
our reconstruction algorithms as Matlab functions. The server 
is written in C/C++ and the GPU is programmed with the 
Compute Unified Device Architecture (CUDA). The GPU used 
in this study is a GeForce GTX 285 (NVIDIA, Santa Clara, 
CA). 
 

IV. PERFUSION MICRO-CT  
Recently we have proposed an approach to  measuring lung 

perfusion in rats using micro-CT[3] with a temporal sampling 
equivalent to one heart beat. We have based our approach on 
the paradigm that multiple carefully controlled injections of 
contrast agent create reproducible time attenuation curves. The 
method involved the use of a conventional radiographic 
contrast agent such as Isovue 370, (Bracco Diagnostics, NJ) 
delivered via a jugular vein catheter. Unfortunately this 
approach limits one’s  ability to perform longitudinal studies. 
We have addressed this limitation using a tail vein catheter for 
delivery of contrast agent and another novel sampling strategy.  
The sampling strategy is illustrated in Fig. 6. A single 360o 
rotation is achieved in 22 sec and permits the acquisition of 440 
projections (20 projs/sec). This projection data allows the 
reconstruction of 4 time points by using a different quadrant of 
projections from each tube/detector.  This may be inadequate 
for accurate perfusion estimation. The number of time points 
(and therefore the temporal resolution) during first pass 
perfusion can be increased by using multiple 
injections/rotations. We use four (m=4) different  injections 
and full rotations. The total volume of contrast agent is limited 
to 0.4 ml and is delivered using a LabVIEW controlled 
micro-injector as 4 injections (each 0.1 ml) separated by 2 
minutes intervals to allow for clearance. Each rotation is started 
with an angular offset of 90o/m i.e. 22.5o in case of 4 injections 
and rotations. The temporal resolution is increased N=4m i.e. 
16 times to 1.38 sec. Post sampling, data is selected from the 
complete set of 440x4=1760 projections and used for 
reconstruction using Feldkamp’s algorithm. Note that the 
temporal resolution can be further increased if subsets of 
projections are used, but in such situations an iterative 
reconstruction such as TV-CT is preferred. Fig. 7 presents 
results from a lung perfusion study in a C57BL/6 mouse. 
Images were reconstructed with Feldkamp’s algorithm at 88 
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microns voxel size and 1.38 s temporal resolution. The 
enhancement in a selected region of interest in the lung 
parenchyma represents the time attenuation curve and can be 
used to compute perfusion maps. The associated dose of such a 
study was less than 0.2 Gy. 

 

 
Fig.6. (A) The perfusion sampling involves the use of multiple injections and 
rotations (m=4). The first pass perfusion is represented by a generic time 
attenuation curve. The successive rotations involve starting with an angular 
offset of 90o/m. (B) The temporal resolution can be increased by combining 
projections from multiple acquisition. This is achieved by selecting sectors with 
projections corresponding to the same time point during the time attenuation 
curve. 
 

V. CONCLUSION 
These results demonstrate how micro-CT can be used not 

only for robust morphological but also functional imaging 
requiring 4D data. While our micro-CT system is in many ways 
unique, the sampling methods and software that we describe 
here can be used with commercial systems[2]. These novel new 
acquisition and reconstruction strategies show extraordinary 
promise for high throughput and longitudinal studies with 
immediate applications in a wide range of preclinical studies 
such as in cardiopulmonary safety or cancer research 
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Fig.7. (A) The same coronal micro-CT slice over nine successive time points in 
the perfusion sequence. A lung parenchyma region of interest was selected (red 
circle) and the time attenuation curve is shown in (B).  
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Abstract— We investigate the applicability of total variation 

(TV) regulated iterative algorithms for microCT. Two types of 

algorithms are investigated: the projection onto convex sets 

(POCS) type algorithms with minimization of TV, and maximum 

likelihood (ML) reconstruction with a TV penalty. The goal is to 

find a practical iterative algorithm for applications on microCT 

scanners when reduced scanning time and/or reduced radiation 

dose are preferred.  We have done numerical simulations to study 

the properties of the algorithms. However, our focus is on studying 

the behavior of the algorithms when they are applied to real data. 

Our preliminary results from both simulations and real data 

indicate that the ML-type reconstruction gives better 

reconstruction in terms of robustness and noise property, but 

converges much slower than the POCS-type reconstruction.  

 
Index Terms — microCT, tomography, iterative reconstruction, 

total variation 

I. INTRODUCTION 

Micro computerized tomography (microCT/nanoCT)  

technique  is being used in an increasing  range of applications 

such as biomedical, geology and material research.  With a large 

array area detector, single circular orbit is the standard scanning 

geometry due to its simplicity and efficiency. For the same 

reasons, filtered back-projection algorithms, in particular, the 

Feldkamp cone-beam reconstruction (FDK)[1], are the 

algorithms of choice for reconstruction.   

It is well known that iterative reconstruction algorithms may 

improve image quality due to possibilities of modeling the 

imaging system and data noise, and of incorporating prior 

knowledge on the object. The advantages over the FBP-type 

algorithms are much more obvious when the acquired data are 

coarsely sampled, incomplete, or distorted by physical 

phenomena such as scattering or beam-hardening effect, if these 

effects can be properly modeled. In emission tomography, e.g., 

Position Emission Tomography (PET), Single Photon Emission 

Tomography (SPECT), where the measurements have low 

photon counts, the iterative algorithms, especially the ML-type 

algorithms, are widely studied and validated as valuable 

reconstruction algorithms. In transmission X-ray CT, the 

iterative algorithms are not yet commonly known, though 

impressive progresses have been made in the last years [2]. 

Roughly, there are 2 major reasons. First of all, in most 

applications of microCT, the signal-to-noise ratios in the scans 

are much higher than those in an emission scan. Also the line 

integral model is a better approximation in CT.  Therefore, FBP 
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is usually quite effective. This is particularly true for in vitro 

scanning and material scanning, when radiation dose is not an 

issue. Secondly, the image array in high resolution cone-beam 

microCT is huge compared to PET or SPECT, in the order of 

500
3
~8000

3
 voxels.  This imposes an enormous challenge for 

iterative algorithms which require holding almost the entire 

image matrix in memory during forward-projection. The 

reconstruction time is also prohibitively long. Recent 

developments on iterative algorithms with prior image models 

based on total variation (TV) [3, 4] have shown impressive 

reconstructions from a small number of projections. In parallel, 

processing hardware such as Graphics Processing Units (GPU) 

is advancing rapidly and the investigations on using them to 

accelerate reconstruction are getting more and more popular [2].  

These progresses have renewed the interest for iterative 

algorithms for microCT scanners.  

       We have implemented two types of iterative algorithms and 

evaluated them with both numerical simulations and real data. 

The first algorithm is the adaptive steepest descent POCS 

(ASD-POCS) algorithm by constrained TV minimization 

proposed by Sidky and Pan [3].  This method approximates 

image reconstruction as a finite linear system, and seeks a 

solution with minimum TV within the set of solutions satisfying 

a given data fidelity condition. The minimization of TV is 

achieved with a steepest descent algorithm with adaptive step 

size.  The POCS step, which enforces the data fidelity, is 

achieved by the basic Algebraic Reconstruction Technique 

(ART) algorithm combined with the non-negativity condition.  

We refer to this algorithm as ART-TV. The underlying 

assumptions are that the system is underdetermined and that 

most objects are piece-wise constant and therefore the 

corresponding images have sparse gradient-magnitude images.  

These authors have demonstrated that the algorithm is capable 

of accurate reconstruction from few angular projections. The 

second algorithm is the maximum-likelihood (ML) algorithm of 

O’Sullivan and Benac [5]. We refer to this algorithm as ML or 

ML-TV if a TV penalty term is used. In this work, the  

polychromaticity of the X-ray spectrum and scattering has not 

been modeled.  

The purpose of this investigation is to find a practical 

algorithm for microCT data.   More specifically, we try to 

identify situations where iterative algorithms outperform the 

conventional FBP-type algorithms and are practical as far as the 

computer resources and reconstruction times are concerned. A 

few situations are in our mind: 1. Animal imaging, with the aim 

of reducing radiation dose for longitudinal studies when the 

animals are scanned repeatedly during a certain period, or in 

dynamic scans (respiratory, cardiac dynamic imaging) when 

signal-to-noise ratio may be low; 2. Samples which may change 

quickly due to temperature change or drying out, and for which 

short scans are preferred; 3. Low signal-to-noise scans, for 
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example, ultra-high-resolution scans (<1 m) when the power 

of x-ray source is limited.  Reconstructions of both numerical 

simulations and real scans are presented.  

II. RECONSTRUCTION ALGORITHMS 

A. Imaging system and notations 

We consider a cone-beam CT system with a single circular 

orbit. All scanners in this study are capable of a full 360-degree 

scan.  Each system contains an X-ray source and a 2D camera 

consisting of UxV imaging elements, where U and V are in 

order of 512…4000.  The imaging system rotates during a scan 

in a step-and-shoot mode, yielding P projection images, one at 

each angular position.  

We denote the detected X-ray intensity at each imaging 

element as yj, j = 1,…,D, where D=PxUxV is the total number 

of elements (also referred to as lines of response (LOR’s)).  

We denote the non-attenuated X-ray intensity in each LOR as 

Ij. This is more often referred as air intensity. The values are 

obtained from the LOR’s at detector edges where the X-rays do 

not pass through the object.  

We denote the linear attenuation coefficient in voxel i as xi, 

i=1, …, N, where N≈UxUxV is the number of voxels. xi’s are 

the unknowns a reconstruction algorithm seeks.  

The linear imaging system considered by the POCS-type 

reconstruction can be described as: 

)(ln
1

, jj

N

i

iij yIxs 
                                                         

(1) 

where <sj,i> denotes the system matrix.

 The ML-type reconstruction assumes that the measurements 

are Poisson variables. The mean value in LOR j is 
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 The summation in eq. (1) and (2) is the projection operator.  

Due to the large data size, it is impossible to pre-calculate the 

system matrix. Instead, the sj,i are calculated on the fly. We use a 

ray-driven method for projection [8].  For each ray, the 

coefficients are cached in the memory during projection and are 

used later in the back-projection process.  

The total variation of an image x is defined as: 

min

2
)(  xxTV

                                                   

(3) 

The term εmin (=10
-8

) avoids singularity when the gradients of 

TV are calculated. We use a 2-point discretization of each 

component of the gradient.   

 
 

B. Constrained, TV-minimization reconstruction with POCS 

A detailed description of this algorithm can be found in [3]. 

Only an outline and some implementation details are given 

here. The solution of the linear system described by eq. (1) is 

obtained by minimizing the total variation of the image subject 

to 2 constraints: non-negativity constraint and data consistency 

condition (eq. (4) ).   
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where ε is a upper bound on the error defined as the square root 

of the differences between estimated data and the 

measurements. This inequality implies that data inconsistencies 

due e.g. to a simplified data model and noise, are tolerated to a 

certain level ε.  A non-negative solution satisfying (4) is 

obtained by the ART algorithm.  The ART updating is done per 

LOR, and the procedure of updating over all LOR’s is one 

iteration.    For LOR j, the updating of image voxel i is given by 
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where βϵ(0,1] is the relaxation parameter, which is reduced by a 

factor βredϵ(0,1] after each iteration. The minimization of TV is 

done using steepest-descent algorithm with adaptive step size.   

A drawback of this algorithm is the optimization of the 6 

parameters in use.   

    Alternatively, ART can be replaced by the simultaneous ART 

(SART) where the image is updated per projection instead of 

per ray in ART.  

C. Maximum likelihood  reconstruction with TV penalty 

In maximum-likelihood approach, the measured X-ray 

intensities are assumed to have Poisson distribution. Note that 

this Poisson model is approximate because the projection data 

usually undergo various corrections first. Based on this 

assumption, the log-likelihood of a dataset is given by:  

)!log()log()( jjjj yyyyx  
             

(6) 

 A maximum-likelihood reconstruction is a solution that 

maximizes the log-likelihood objective function Ф(x). We use 

the maximum-likelihood (ML) algorithm of O’Sullivan and 

Benac [5].  A TV penalty term can be added to form a new 

objective function Ψ(x)= Ф(x)- γ'  TV(x).  Maximization of 

Ψ(x) can be achieved using the one-step-late [6] modification of 

the ML algorithm. The updating equation is given by: 
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where  
max1 ,



N

i ijsiz , and  


D

j jiji ysb
1 , is the 

back-projection of the measurements and can be pre-calculated.   

The regulating parameter γ'=γ.max(bi), where γ is usually very 

small, in the order of 10
-3

~10
-5

. Non-negativity condition is 

applied after each updating.   We use a uniform zero-image as 

starting image.  In this algorithm, the forward-projection is 

ray-driven and the back-projection is voxel-driven. 

Acceleration using ordered subsets(OS) was applied with  a rule 

of thumb that each subset should contain at least 30 projections. 

     

III. 3D SIMULATION 

We have done 3D numerical simulation of the 3D 

Shepp-Logan phantom using the geometry of the in vivo 

scanner SkyScan-1076.  To save computation time we 
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down-sampled the projections from 1Kx1K to 256x256 by 

averaging, and used a large rotation step of 10 degrees.  

 Fig. 1 shows one slice of the reconstructions of a simulated 

noise-free 3D Shepp-Logan phantom using different 

algorithms. Other simulations have also been performed with 

Poisson noise, more views and fewer views down to 18 (results 

not shown). The ML-TV algorithm gives the most accurate 

reconstruction after 2000 iterations. As also pointed out by 

other authors, we observe that ART-TV and SART-TV reach a 

good reconstruction after about 100 iterations, while ML and 

ML-TV yield a reasonable reconstruction only after more than 

1000 iterations. The TV penalty reduces noise and streaking 

artifacts effectively.  

 
Fig.1. Reconstructions of simulated 3D Shepp-Logan 

phantom: 36 projections over 360 degrees. A.  FDK; B. 

SART-TV (99 iter); C: ML(2000 iter, 1 subset); D. 

ML-TV (2000 iter, 1 subset, γ=0.0001).  

IV. RESULTS ON REAL DATA  

      SkyScan produces several types of microCT and nanoCT 

scanners [7], each of them can operate at different resolutions. 

Due to the large memory requirement and time consuming 

nature of the iterative algorithms, we have restricted us to 

applications with data up to 1Kx1K. 

       Two examples are given.  One is a small piece of a car 

catalytic converter with a regular pattern of very fine structures. 

Another is an adult mouse scanned while respiratory motion 

signals were recorded for retrospective synchronization [9]:  

projections were sorted offline into 4 respiratory phases. Each 

phase is less affected by motion blurring; however, the noise 

level is higher.  To study the behavior of the algorithms with 

coarser angular sampling, the scans were also down-sampled in 

angular direction. 

        During acquisition, the projections were processed for 

geometrical distortion correction and flat field correction.   

A. Sample scan example 

      The catalytic converter was scanned on a SkyScan-1172 

scanner: 275 views, 0.7-degree step, projection size of 

1000x524 pixels, Al+Cu filter was used to reduce 

beam-hardening.  Each projection is the average of 20 frames of 

474 ms each, resulting in a good signal-to-noise ratio. The 

reconstructed volume contains 524x1000x1000 voxels.   Ring 

artifacts correction has been applied before reconstruction.  

      The top row in fig. 2 shows reconstructions of the original 

data set (275 views). FDK is quite effective and the 

reconstruction is almost artifact-free. ART-TV gives 

comparable results as FDK after just a few iterations. The ML 

algorithm also gives comparable image after 20 iterations (11 

subsets). With TV penalty, ML reconstruction is somewhat 

blocky (image not shown).  

 The bottom row in fig. 2 shows reconstructions from only 19 

projections extracted from the original dataset. As can be seen, 

ART-TV and ML resolve far more details than FDK but 

nevertheless do not allow recovering the resolution obtained 

with the 275-view scan.  The ML-TV image becomes blocky 

without resolving more details and a similar blocky look is also 

observed with ART-TV when the iteration exceeds a certain 

stage.  

 
Fig.2. Reconstructions of the catalytic converter sample.  

Top row: 275 views.; Bottom row: 19 views. A. FDK; 

B. ART-TV(19 iter.); C. ML (21 iter., 11 subsets); D. 

FDK;  E.  ART-TV (19 iter);  F. ML (101 iter, 1 subset) 

. 

B. Animal scan example 

     The second example is one phase of a 4D scan with 

retrospective synchronization [9].  An adult mouse was scanned 

on a SkyScan-1076 scanner:  451 views with 0.8-degree step; 

projection size 1000x524; 0.5mm Al filter; 8 frames with 

158ms exposure time per angular position. The total scan 

duration was 16 minutes. After sorting into 4 time bins, each bin 

contains ~2 frames per view.  This scan is relatively noisy, and 

it is still affected by motion despite the synchronization.  The 

reconstructed volume is 524x1000x1000.      

      The reconstructions using FDK, ART-TV and ML are 

shown in fig. 3.  Compared to FDK, ART-TV seems to recover 

part of the blurring artifacts (ribs), but the soft tissues (blood 

vessels in the lung, heart) are not well distinguishable. The ML 

algorithm converges slowly but the soft tissues are better 

resolved than FDK, while the bone structures are not as sharp as 

with FDK.  

     A subset of the dataset with 76-views was obtained. The 

reconstructions are shown in fig. 4.   ART-TV has the poorest 

image quality for low-contrast soft tissues.  The soft tissues are 
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distinguished much better with ML and ML-TV (not shown) 

than the other 2 algorithms.  

 

 

 

 
 

  Fig.3. 451-view reconstruction. Left: transaxial slice; right: 

sagittal view(rotated by 90o).  Top: FDK; middle: 

ART-TV(16 iter); bottom:ML (21 iter, 15 subsets). 

V. DISCUSSIONS 

We have investigated the potential benefits of 2 iterative 

algorithms for the SkyScan microCT and nanoCT scanners. 

Though numerical simulations show remarkable improvements 

when using these algorithms instead of the standard FDK 

algorithm, these advantages are not always confirmed with real 

data.  This might be due partly to the fact that the scatter and the 

polychromatic X-ray spectrum have not been modeled in our 

study.  

For data with sufficient sampling and low noise level, FDK 

remains a robust, efficient and effective algorithm for most 

applications.  ART-TV gives a good reconstruction with just a 

few iterations, but even with the TV minimization streaking 

artifacts and salt-and-pepper noise are still hard to get rid of 

completely. This might require further optimization of the 6 

parameters used in this algorithm. Low-contrast objects, such as 

soft tissues, are not very well resolved with ART-TV.    The ML 

algorithm is easier to use in terms of parameter optimization and 

generates better reconstructions especially for low-contrast 

objects and in vivo scans.  However, it converges slowly. The 

ordered-subset method does accelerate convergence but cannot 

be applied when the dataset only contains a few views. The TV 

penalty used in both algorithms does reduce streaks and noise, 

but tends to generate blocky images, which might in practice be 

more misleading than a noisy but unbiased FDK image.  

In both algorithms, more accurate forward/back-projectors 

are worth investigation. In ART-TV or SART-TV, this may 

reduce the streaking artifacts caused by an inaccurate projection 

model. In ML, when a ray-driven back-projector was used,   

oscillations could be observed beyond certain iteration stage. 

This problem can be avoided by a voxel-driven back-projector 

which is more accurate.   

 

 

 
  Fig.4.  76-view reconstruction.  Top: FDK; middle: 

ART-TV(89 iter); bottom: ML-TV(181 iter, 2 subsets) 
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ABSTRACT
In µCT imaging, structures that are small w.r.t the image res-
olution are hard to segment because of partial volume ef-
fects. In this paper, we show that if the object consists of
a small number of different materials, each having a con-
stant density, the resolution of the tomographic reconstruc-
tions can be dramatically improved by using prior informa-
tion on the grey values of the scanned objects, resulting in
much more accurate segmentations. The proposed method is
based on an upsampling of the reconstruction grid, combined
with the discrete algebraic reconstruction technique (DART)
[1], in which the scanned object is assumed to be composed of
homogeneous materials. Experiments on simulated CT data
of foams show that the proposed method indeed generates
significantly better segmentations compared to conventional
methods.

Index Terms— µCT, computed tomography, superreso-
lution, discrete tomography, metal foams

1. INTRODUCTION

High quality µCT reconstructions of very small structures,
such as bone trabeculae or cell edges in porous materials,
often prove difficult to obtain. The use of a high resolution
detector to increase CT acquisition quality, requires longer
scanning times and a higher radiation dose, risking damage
to the object. Alternatively, zooming in on a specific region
of interest in the object as to increase the spatial resolution of
that region has the drawback of projection truncation, leading
to cupping artifacts in the resulting reconstructions.

In our approach, the aim is to reconstruct low resolution
µCT images on an upsampled, high resolution grid. As up-
sampling makes the problem highly underdetermined, the dis-
crete algebraic reconstruction technique (DART) [1] is used
to include prior knowledge to resolve the non-uniqueness of
the solution. The DART technique is an iterative reconstruc-
tion method that assumes the objects to be piecewise uniform
with known densities. An additional advantage of DART is
that it results in a segmented image. Indeed, DART aims to

This work was financed by IBBT Flanders. K. J. Batenburg also ac-
knowledges the financial support of FWO, Flanders.

Fig. 1. Reconstruction of a polyurethane foam.
(a) FBP reconstruction (b) zoomed in FBP reconstruction

(c) Otsu segmentation of (b)

find the piecewise constant image that minimizes the projec-
tion distance (i.e. the difference between the measured data
and the Radon transform of the reconstructed image). This is
essentially different from finding the optimal segmentation of
a continuous reconstruction from the dataset.

An important application of µCT imaging lies in the field
of materials science where foam objects often need to be char-
acterized. Using segmented X-ray tomographic reconstruc-
tions, various structural parameters (such as pore size distri-
bution and pore interconnectivity) and mechanical parame-
ters (such as stiffness and strength) can be estimated non-
destructively [2]. It is, however, critical that these segmen-
tations are of an adequate resolution. Fig. 1(a) shows a typ-
ical FBP reconstruction of a polyurethane foam taken with
a SkyScan 1172 µCT scanner at a pixel resolution of 17µm.
The zoomed-in image in Fig. 1(b) shows that the edges of the
pores are very thin compared to the resolution of the image.
Indeed, the thickness of some edges is even smaller than a
single pixel. This leads to partial volume effects, i.e. a pixel
might belong in part to one partition and in part to another,
making image segmentation a very daunting task. Fig. 1(c)
shows the segmentation of this reconstruction created by se-
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lecting a global threshold using the well-known method of
Otsu [3]. It is clear that very small structures are not found
and that some are too thick. This will result in inaccurate
analysis of the foam object.

In this paper, the proposed discrete tomography technique
for the reconstruction on an upsampled grid is applied to sim-
ulated CT datasets of metal foams as to increase the effective
spatial resolution of the reconstructions and segmentations.

The paper is organized as follows: Section 2 explains the
theory behind our approach. Section 3 describes the ex-
perimental setup and presents reconstruction results on a
two dimensional image. Section 4 then discusses how the
proposed algorithm can be extended to three-dimensional
volumes. Finally, conclusions are drawn in Section 5.

2. SUPERRESOLUTION BY
DISCRETE TOMOGRAPHY

Consider a sinogram consisting of M projections with N
radial samples at sampling distance ∆s = 1. Such a dataset
is typically reconstructed on an N × N grid, with sampling
distance ∆t = ∆s = 1 (see Fig. 2(a)).
Algebraic reconstruction methods consider tomographic re-
construction as the problem of solving a system of linear
equations

Ax = p (1)

where x = (xj) are the unknown attenuation values on the
grid in image domain, p = (pi) are the measured projec-
tion values, and A = (ai,j) is the linear projection operator.
Consider an ideal experiment, without noise, where a suffi-

(a) coarse grid (b) fine grid

Fig. 2. (a) reconstruction grid used for conventional CT. (b) recon-
struction grid in the proposed discrete tomography approach

cient number of projections is available to ensure that the sys-
tem in Eq. (1) has a unique solution. Now assume that the
uniform density of the object is known in advance. The com-
bination of the complete dataset and the prior knowledge then
represents an overdetermined reconstruction problem. Hence,
parts of the projection data contain redundant information. To

optimally exploit this redundant data, we transform the recon-
struction problem on the N ×N grid to a limited data recon-
struction problem on an aN×aN grid with sampling distance
∆t̃ = 1/a for some integer a > 1. Note that the sampling
distance of the refined grid is now smaller than the sampling
distance of the detector pixels. Each detector pixel can be
seen as the sum of contributions of a subdetector pixels with
sampling distance ∆s̃ = ∆s/a = 1/a which corresponds to
the sampling distance of the refined grid (see Fig. 2(b)). Com-
pared to the system in Eq. (1), the system

Ãy = p (2)

corresponding to the upsampled reconstruction grid has the
same number of equations, while the number of unknowns
has increased by a factor a2.

To solve the system in Eq. (2) under the constraint that
each of the yi can only take values in a prescribed set R =
{ρ1, . . . , ρk}, we apply DART. Here, we only provide a short
overview of this iterative heuristic algorithm and refer to [1]
for more details. First, a conventional reconstruction is com-
puted. Then, a number of DART iterations are performed,
each containing the following steps:

1. The current reconstruction is subdivided into partitions
by thresholding and each of the partitions is assigned
the known grey level value.

2. The difference between the actual projection data and
the forward projection of the segmentation is com-
puted.

3. Pixels that are on the boundary of a partition are iden-
tified.

4. A regular iterative technique such as SIRT [4] is applied
to reconstruct the projection difference in the pixels on
the boundaries. The other pixels are kept fixed at the
grey level of their partition.

The motivation for the DART-approach is that segmentation
errors, in general, occur near the edges of the different parti-
tions. By assuming that the pixels in the center of a partition
are already perfectly reconstructed, the number of unknowns
in Eq. (2) drops while the number of equations remains the
same, making it again uniquely solvable.

3. 2D SIMULATION EXPERIMENT

To demonstrate the proposed method, a 512×512 pixel phan-
tom image was simulated, shown in Fig. 3(a). This binary im-
age is based on an FBP reconstruction of a porous material
in a real CT-scanner and contains many small holes and very
thin edges that are difficult to segment.

A Poisson distributed, parallel beam sinogram image was
computed with M = 360 projection angles, equiangularly
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(a) Phantom A, 512 × 512 pixels,
used in section 3

(b) Phantom B, 256 × 256 ×
30 pixels, used in section 4,
up: single slice, bottom: ver-
tical cut

Fig. 3. Simulated phantoms of foams.

distributed between [0, π) and 512 detector pixels. The par-
tial volume effect was then simulated by downsampling each
projection with a factor d = 4, i.e. by summing the radial
bins 4 by 4. This sinogram, with N = 128 detector pixels,
was then used in the following experiments:

(a) Standard FBP reconstruction with Otsu’s segmentation
method [3] on the N ×N grid.

(b) DART reconstruction on the N ×N grid.

(c) FBP reconstruction on a refined aN × aN grid (with
a = 4) from an upsampled aN ×M sinogram. The up-
sampling of the sinogram is performed in the radial di-
rection by 1D linear interpolation such that each projec-
tion consists of aN pixels with pixel width ∆t = 1/a
and a > 1 an integer.

(d) DART reconstruction on the refined aN × aN grid
(with a = 4) from the original N ×M sinogram ac-
cording to the approach explained in Section 2.

To quantify the reconstruction quality, the number of misclas-
sified pixels (NMP) w.r.t. the ground truth image in Fig. 3(a)
was computed. Since the experiments were performed at
varying resolutions, the reconstructions were rescaled to the
size of the ground truth images using bilinear interpolation.

Fig. 4 (a-d) depict the above mentioned reconstruction ex-
periments (a-d). In each subfigure, the reconstruction is dis-
played in red and the ground truth image in green. Where
both images overlap, the corresponding pixel is colored in
yellow. In our experiments, reconstruction on a larger grid
is clearly advantageous. The improvement, however, is more
profound when using DART with grid upsampling than when
using FBP with sinogram upsampling. Using the method of
Section 2, the edges of the structure are reconstructed more
accurately and nearly all small holes are found.

(a) FBP a = 1 (b) DART a = 1
NMP=11675 (4,45%) NMP=11019 (4,20%)

(c) FBP a = 4 (d) DART a = 4
NMP=9726 (3,71%) NMP=2393 (0,91%)

Fig. 4. Thresholded FBP and DART reconstructions of Phan-
tom A, with (a = 4) and without (a = 1) upsampling.

4. 3D SIMULATION EXPERIMENT

The update operations in the DART algorithm involve pix-
els at the object boundary. In classical reconstruction tech-
niques for parallel beam and fan beam data, each slice of a
3D volume is reconstructed independently. For DART, how-
ever, such a strategy does not exploit the boundary concept
in the third dimension. Therefore, one can expect that us-
ing a 3D connectivity window for determining the bound-
ary pixels leads to improved accuracy compared to a purely
2D approach. For 2D DART reconstructions, we use a 8-
connectivity window to determine the boundary pixels, i.e. a
pixel is considered on the boundary if any of its 8 neighbours
belong to a different partition. For 3D DART reconstructions,
we have found that it is best to use 6-connectivity, i.e. for each
dimension only the two most adjacent ones are considered.

To demonstrate the superresolution technique in 3D, a
256 × 256 × 30 phantom image was generated, representing
a polyurethane foam (Fig. 3(b)). In these kind of foams, it
is often important to detect fractured cell walls. The volume
was created by computing a Voronoi diagram on a set of ran-
domly chosen points, which ensures that all walls are closed
(unfractured).

For each slice of the phantom volume, a sinogram was
created using 256 detector pixels and M = 180 projection
angles, equiangularly distributed between [0, π). These were
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(a) FBP a = 1 (b) DART a = 1
NMP=71973 (3,66%) NMP=99321 (5,05%)

(c) FBP a = 4 (d) DART a = 4
NMP=89902 (4,57%) NMP=3268 (0,17%)

Fig. 5. Thresholded FBP and DART reconstructions of Phan-
tom B, with (a = 4) and without (a = 1) upsampling.

then downsampled with a factor d = 2 (N = 128), resulting
in a 128× 180× 30 sinogram volume. Note that this creates
an image resolution that is lower than the thickness of the cell
walls.

Experiments (a-d) from Section 3 were repeated for Phan-
tom B with the 3D version of DART. For each reconstruction,
Fig. 5 depicts a single slice of the volume (the same one as
shown in Fig. 3(b)). Note in Fig. 5(b) that the DART recon-
struction on an N ×N grid does not necessarily improve the
reconstruction accuracy compared to the FBP reconstruction
for a = 1. This is because DART suffers particularly from
partial volume effects, as no intermediate grey levels are al-
lowed in the binary reconstruction. Also note in Fig. 5(c) that
using the sinogram upsampling method not always improves
the reconstruction accuracy. This is caused by the incorrect
assumption that the projection data is a continuous curve. It
is, however, clear that in Fig. 5(d) a drastic improvement in
reconstruction quality is obtained. Indeed, where the other
reconstructions all show fractured cell walls, the proposed
method accurately recovers most cell walls.

To demonstrate the effect of using the 3D connectiv-
ity window, a slice-by-slice DART reconstruction volume
was also computed. Fig. 6 shows a vertical cut through the
different slices of the volume. Although both methods gener-
ate very good reconstructions compared to the conventional
methods, employing the 3D boundary concept lowers the
number of misclassified pixels even more.

(a) Slice-by-slice DART (b) 3D DART
NMP=6198 (0,32%) NMP=3268 (0,17%)

Fig. 6. Vertical cut through the slices of DART reconstruc-
tions (a = 4) of Phantom B.

5. CONCLUSIONS

To improve the detection of small structures in CT reconstruc-
tions, we proposed a method that increases the spatial resolu-
tion without increasing the detector resolution. The method
assumes that the object is composed of homogeneous ma-
terials and is piecewise constant. This prior knowledge is
exploited by reconstructing the object on an upsampled grid
using the discrete algebraic reconstruction technique DART,
effectively increasing the spatial resolution without increas-
ing the detector resolution. Our experiments on simulated
data have shown that the proposed method generates recon-
structions with significantly more detail compared to conven-
tional reconstruction algorithms. We extended this method to
parallel-beam 3D, as to include the prior knowledge of piece-
wise uniformity of the object in the third direction as well,
thereby achieving better reconstructions than a slice-by-slice
approach. In future work we will further validate the proposed
method on real data.
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Abstract—An enginereed micro-CT scanner for in vivo imag-
ing of small animals (Xalt, which stands for X-ray AnimaL
Tomograph) has been recently built at the Institute of Clinical
Physiology of the National Research Council (IFC-CNR, Pisa,
Italy), in partnership with the University of Pisa. The Xalt
scanner is a cone beam micro-CT based on a 2-dimensional flat-
panel detector and microfocus x-ray source. The magnification
and detector orientation can be manually varied to select the
spatial resolution, field of view (FoV) and sensitivity that match
the needs of several different imaging protocols for mice, rats
and test tubes. Even with high precision mechanical assembly,
recalibration for geometric misalignments is necessary after each
modification of the scanner geometry. To avoid the burden of
geometric recalibration, a semi-automatic cone beam calibration
method has been applied and integrated in the reconstruction
software. The calibration method does not require measurements
on specific phantoms, as it is based on the recovery of redundan-
cies in the projection data of generic objects that are lost when the
scanner components are out of alignment. By using this method,
our variable geometry micro-CT can be realigned at each scan by
analyzing the projection data set (or part of it), without additional
phantom measurements. To assess the reliability of our method
we have made several acquisitions on a phantom, each carried
after mechanical stress of the positioning system. We showed
that the semi-automatic calibration method is an effective aid
for a fast and reliable scanner realignment, without additional
acquisitions.

Index Terms—MicroCT, geometrical calibration, variable ge-
ometry scanners

I. I NTRODUCTION

High resolution x-ray micro-computed tomography (micro-
CT) is an unrivaled tool for morphological imaging of small
sized animals and specimen. Many mechanical/geometrical
designs have been developed, with spatial resolutions ranging
from 100 µm down to less than 1µm, depending on the
characteristics of the detector and the x-ray source. The
sharpness of the reconstructed image relies strongly on the
relative alignment between the focal spot, the axis of rotation
(AoR) and the detector; hence, the accurate measurement of
geometrical misalignment of the system is necessary to ensure
proper image quality. Several authors have investigated the
problem of the geometrical calibration in cone beam CT, de-
veloping algorithms for the measurement of the misalignment
parameters of the system [1]-[3], and for image reconstruction
with known geometric misalignments [4]. In case of variable
geometry systems, allowing for selection of source-to-axis
distance (SAD) and axis-to-detector distance (ADD) in a given

Fig. 1. The Xalt micro-CT scanner at IFC-CNR, Pisa, Italy

range, theproblem of geometric calibration arises each time
one or both of the above distances are changed.

The aim of this work is to assess the capability of a
previously published cone beam calibration method [1] to
reduce the burden of recalibration after modifications of the
geometry setup. The method has been applied on a novel small
animal micro-CT scanner with variable geometry, which was
recently built in the framework of a collaboration between the
Institute of Clinical Physiology (IFC-CNR) and the Functional
Imaging and Instrumentation Group (FIIG) of the Department
of Physics ”E. Fermi” - University of Pisa. The micro-CT
scanner was designed to be compatible with the YAP-(S)PET
scanner (ISE s.r.l., Vecchiano, Italy), which is installed in the
same molecular imaging laboratory at IFC-CNR. This enables
us to perform efficient multimodal PET/SPECT/CT imaging
on small animals.

II. M ETERIALS AND METHODS

A. Variable geometry micro-CT scanner

TheXalt scanner (X-rayAnimaL Tomograph) is a dedicated
in vivo small animal cone beam micro-CT, designed to provide
flexible geometry setup and scanning modality. The x-ray
source is a microfocus tube with 50 kV maximum voltage,
1 mA maximum current and 35µm nominal focal spot size.
The source power supply is equipped with a system for fast
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on/off swicth via external trigger. The flat panel detector is
composed bya CMOS sensor with 2048×1024 square pixels
of size 48 µm, for a total active area of 10×5 cm2; the
scintillator is a Gd2O2S:Tb (Gadox) layer with plastic backing.
The intrinsic spatial resolution of the flat panel detector is
8.5 lp/mm @ 10% MTF.

The source and the detector are mounted on the rotating
gantry in such a way that the SAD and the ADD can be
changed independently by a simple manual operation; this
allows to change the magnification in the range 1.13-2.60.
The mechanical system for the shift of the detector and the
source is ready to be motorized, to allow for a future im-
plementation of software-controlled geometry modifications.
The rectangular detector can also be skewed by 90 degrees
about its central axis: this permits to select between wide
transaxial field of view (FoV) and long axial FoV, according
to the needs of the specific imaging protocol. Depending on
the geometry setup, the maximum transaxial FoV is 80 mm
in diameter, the maximum longitudinal FoV is 79 mm (for a
single circular scan) and the minimum voxel size is 18.5µm.
Both continuous rotation and step-and-shoot scanning modes
are possible. The device is fully shielded for x-ray leakage:
the dose rate at each point of its external surface is always
less than 1µSv/h as requested by official radiation protection
regulatory statements.

The scanner is controlled by dedicated software with user-
friendly graphical interface for control/acquisition and ana-
lysis/reconstruction. The acquisition program allows to edit
the imaging protocol parameters and animal information, to
acquire scout views at arbitrary angles before tomographic
acquisitions and to acquire flat-field and offset calibration data.
It also provides continuous monitoring of the hardware status.

B. Data preprocessing and tomographic reconstruction

The analysis/reconstruction program is a modular program
for preprocessing of the raw data, automatic geometric ca-
libration and volumetric reconstruction. In the preprocessing
module, the raw data are corrected for dark signal and flat
field normalization. The output of this module is a corrected
dataset that is ready for tomographic reconstruction. Before
reconstruction, the corrected dataset can be used as input
of the geometric calibration module for the semi-automatic
measurement of the misalignment parameters of the system,
as described below. After the geometric calibration, the volu-
metric reconstruction module is used; this module implements
a modified Feldkamp algorithm with perspective correction
[4]. The misalignment parameters used in the reconstruction
module are those obtained in the geometric calibration module.
Before starting the recontruction of the whole volume, three
preview images along the main orthogonal planes can be
checked to ensure that all parameters are correct. The preview
slices can be reconstructed at arbitrary distance from the me-
dian planes. The program allows the choice of reconstruction
filter, and provides ring artifact reduction, cupping correction
and Hounsfield Unit (HU) normalization. The volumetric
reconstruction module is optimized for cache memory usage,

it exploits symmetries to reduce the backprojection time and
it was parallelized with OpenMP to take advantage of modern
multi-core processors. All voxels outside of the acquisition
FoV are excluded from the backprojection to reduce further
the computation time. The backprojection time from a dataset
of 720 projection of 2048×1024 pixels is<2 minutes for a
volume of 5123 voxels and<30 minutes for a volume of
10243 voxels, using a desktop PC equipped with 2 Intel Xeon
3.0 GHz quad-core CPUs.

C. Semi-automatic cone beam geometric calibration

The method for cone beam geometric calibration is de-
scribed in detail in [1]. The overall misalignemt of the
cone beam system is parametrized with the 6-tupleδ =
(δu; δv; δD;φ; η;λ). The parametersδu and δv represent
the transversal shift and longitudinal shift of the detector,
respectively; the parameterδD is the deviation of the actual
SDD from the nominal value; the three anglesφ, η andλ are
the detector skew, slant and tilt, respectively. The misalign-
ment parameters of the cone beam scanner are obtained by
minimizing a geometry-dependent cost function:

c(δ) =
∑

θ,ut,i

e2θ(ut, δ)|ROIi . (1)

In the above equation, the functioneθ(ut, δ) is the error
projection at angleθ which is computed as follows:

eθ(ut, δ) = gθ(ut)− gθ+π−2γ(Hδut). (2)

In practice, the error projection is computed by subtracting
from each line integralgθ(ut), measured at a given pointut

of the misaligned detector plane and for a gantry angleθ, the
corresponding redundant line integralgθ+π−2γ(Hδut). The
operatorHδ is a generalized reflection operator that depends
onδ, as explained in [1]. The computation ofc is restricted to a
small number of ROI’s in the error projection, for the reasons
explained below. It has been shown that the redundancy of
the projection data from a full scan, well known in 2D fan-
beam geometry for all object functions [5], exists also in cone

Fig. 2. Reconstructed slice of the multimodal CT-PET mouse phantom(level
= 750 HU; window = 3500 HU; voxel size = 37µm)
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NM
optimization

d = (-6.479; -0.369; 0.306)

Variance (inside ROIs) = 34252

Error projection

d d= (0;0;0) = 0

Variance (inside ROIs) = 2509320

Error projectionProjection data

Computation
of error image

Fig. 3. Computation of the error projection and selection of the ROI’s to be included in the computation of the cost function. The arrows indicate sharp
edges on the error projection, that disappear when the optimal misalignment parameters of the system are found. When the optimal parameters are found, the
cost function (strictly related to the ROI variance) reaches a minimum. The images refer to experiment n. 4.

beam geometry for objects that are uniform alongz and/or
invariant for rotations about the AoR. For those objects, the
error projection computed at an arbitrary gantry angle with
the true misalignment parametersδtrue is a null function (for
noiseless and continuously sampled data). For real data from
generic objects it was shown that, ifc is computed in some
properly selected ROI’s on the error projection, a minimum
is obtained atδ = δtrue. Hence, the geometric calibration of
the system can be set as an optimization problem. We use the
simplex method of Nelder and Mead [6] for the minimization
of the cost function (1). The user can select the ROI’s and the
number of projection angles to be included in the computation
of the cost function via a graphical user interface.

D. Phantom measurements

In order to study the impact of geometry setup modifications
on the misalignment parameters of the system, we have done
six experiments on a cold multimodal PET/CT mouse phantom
(4 cm diameter) (Isotope Products Laboratories, Valencia,
CA). A reconstructed slice of the phantom is shown in
Figure 2. The main parameters of each experiment are reported
in Table I. Four experiments have been performed with the
same setup, each after mechanical stress (repositioning) of
the system. The mechanical stress consisted in moving back
and forth the x-ray tube and the detector supports, and by
temporarily changing the detector orientation, in order to check

After geometric calibration Before geometric calibration

Fig. 4. Details of the reconstructed image of the phantom (experiment n.1),
before and after geometric calibration. The sharp thin detail is a label tape
placed on the external surface of the phantom.

the reproducibility of the mechanical positioning. The other
two experiments were done on different positions. Among all
the possible geometric configurations, only three were selected
to get a FoV size suitable for the chosen test object (i.e., with
transaxial FoV size> 5 cm). In all experiments, the detector
orientation was in wide transaxial FoV mode (large side in
transverse direction). All scans were done with the following
parameters: 50 kV, 0.5 mA, 2 mm Al filtration, 720 projections
over 360 degrees, 0.5 s/projection.

The calibration module was used to find the misalignment
parameters of the system. As explained in [1], only the
three parameters (δu;φ; η) were determined. The remaining
parametersδv, δD and λ) were all fixed to 0. Because
these latter parameters have less impact in the final image
quality, the accuracy of the mechanical positioning system was
sufficient to leave them uncorrected without significant image
artifacts. Four ROI’s on the error projections were placed
upon sharp edges arising from the phantom and the bed, as
shown in Figure 3. In all experiments, the cost function (1)
was computed usingN = 2 · 105 points from a single error
projection, atθ = 0. A greater amount of data could be
selected for the computation of the cost function in a full
2π scan. We have chosen to include only the data from the
first error projection for two reasons: first, the error projection
at θ = 0 is the only one that is available also for short
scans; second, a reduced number of line integrals included
in the computation of (1) lead to a speed-up of the calibration
process, even if this could reduce the robustness with respect to
noise. In all cases, the initial point of the iterative minimization
process was set toδ0 = (0; 0; 0); hence, no prior estimates of
the actual geometric misalignment of the system were used.

For each experimentn, two reconstructions with Ram-
Lak filter were done: the former was reconstructed with the
misalignment parametersδn−1 measured on the dataset of the
preceding experiment (no recalibration), and the latter with the
parametersδn measured on the dataset of experimentn itself
(with recalibration). This was useful to evaluate the impact of
the mechanical stress between two consecutive experiments, as
well as the capability of the calibration method in identifying
the correct misalignment parameters each time the system is
modified. For the first experiment,δn−1 = δ0 = (0; 0; 0).
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TABLE I
GEOMETRIC SETUP OF PHANTOM EXPERIMENTS AND CALIBRATION RESULTS

Exp. numbern SAD/ADD (mm) Vox. size (µm) Transv. FoV. size (mm) FoV length (mm) δn = (δun;φn; ηn) Calib. time (s)

1 270/56 39.7 80.5 34.6 (-6.075; -0.365; 0.282) 28

2 (-4.751; -0.364;1.634) 29

3 (-5.526; -0.362; 0.313) 26

4 (-6.479; -0.369; 0.306) 41

5 186/76 34.0 62.4 29.0 (-4.001; -0.367; 0.837) 60

6 186/56 36.9 60.8 31.6 (-6.006;-0.405; -0.098) 34
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Fig. 5. Profiles of the reconstructed images along the lines shown inFigure 4,
before and after geometric calibration.

After each reconstruction, a line profile along a thin detail of
the phantom (Figure 4) was evaluated to check the correctness
of the measured misalignment parameters. The profiles were
made all on slices far from the midplane and the AoR, in order
to highlight residual artifacts due to wrong values of skew and
slant, if present.

III. R ESULTS

The optimal misalignment parameters from each datasetn

are reported on Table I. For the first four experiments at SAD
= 270 mm and ADD = 56 mm, the measuredδu was in the
range [-6.479 pixels; -4.751 pixels];φ varied in the range [-
0.369 degrees; -0.362 degrees] andη was in the range [0.282
degrees; 1.634 degrees]. The variations of the misalignment
parameters are on the same order of magnitude also for the
other two experiments. These variations, even if small, have
lead to a deterioration of the image quality when the system

was not recalibrated. This is apparent in Figure 5, were the line
profiles highlighted in Figure 4 are compared forδn−1 (before
recalibration) andδn (after recalibration). Except forn = 3,
the peak of the thin detail after recalibration appears always
sharper and higher than that obtained before recalibration.
In the third experiment, the profile appeare almost identical
before and after recalibration. In all cases, an average time
of 36 s was spent for the iterative minimization of the cost
function.

IV. D ISCUSSION AND CONCLUSIONS

We have built a micro-CT scanner with variable geometry
for high resolutionin vivo imaging on small animals. Due to
the strong sensitivity of the image quality upon small varia-
tions of the misalignment parameters, a recalibration of the
system is necessary after modifications of the geometry setup.
We have shown that our semi-automatic calibration method is
effective in reducing the burden of recalibration. Less than 1
minute was spent to find the optimal misalignment parameters
on each dataset. This time could be reduced by parallelization
of the algorithm for the computation and minimization of
the cost function. The only task requested to the user is the
selection of the ROI’s on the error projections to be included
in the computation of the cost function. As it is expected, the
accuracy of the calibration result can depend on the choice of
these ROI’s. A possible solution is to add fixed sharp details
on the acquisition FoV (e.g., on the animal bed) on which
the ROI’s could be automatically placed by the software that
implements the method.
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Abstract— In 3D medical imaging, the size of the 
reconstructable field-of-view (FOV) is a factor that 
significantly defines the clinical benefit of medical X-ray 
systems. Due to the small detector size, the diameter of the 
FOV of C-arm devices is limited, but it is known that the FOV 
can be enlarged by using a horizontally displaced detector for 
data acquisition in a full rotation. For such geometries 
recently new reconstruction algorithms were proposed, with 
which the image quality of the reconstructions could be 
improved compared to previously known ramp filtered 
backprojection algorithms [3]. The proposed algorithms 
however require a rebinning step involving complementary 
rays, making an online reconstruction almost impossible. We 
present a new algorithm, modifying the algorithm of Kunze et. 
al. [4] allowing an online reconstruction. 
 
Index Terms—displaced detector, cone-beam CT, large volume 

I. INTRODUCTION 
C-arm computed tomography has become an integral part 
of interventional radiology procedures. It is a useful tool 
during liver lesion embolisation to visualize feeding arteries 
or during drainage insertions to guide the placement of 
tubes[1 ,2]. 
However, conventional C-arm devices often suffer from a 
limited reconstructable field of view (FOV) which prohibits 
the imaging of complete organs or both the target and the 
entry point of needle applications. 
It is known that the diameter of the FOV can be almost 
doubled by performing an acquisition with a shifted 
detector in a full rotation. Various algorithms are known for 
this geometry: 
In [3], a FDK algorithm with a specific detector weighting 
scheme applied before the filtering step (W-FDK) is 
proposed which computes an artifact-free reconstruction for 
the plane in which the tube moves, but for large cone angles 
severe artifacts occur. 
These artifacts can be reduced by the algorithms proposed 
in [4] and [5] which are based on the reconstruction scheme 
introduced by Noo [6]. 
Compared to the differentiation backprojection filtration 
algorithm described in [7] these algorithms have the 
advantage that smaller regions in the FOV can be 
reconstructed in high resolution without the need of 
                                                           
a M. Manhart: Pattern Recognition Lab, University of Erlangen-
Nuremberg, Martensstraße 3, 91058 Erlangen, Germany 
b F. Dennerlein, H. Kunze: Siemens Healthcare, 91301 Forchheim, 
Germany. E-Mail: holger.hk.kunze@siemens.com. 

reconstructing long stripes of the FOV to perform the 
Hilbert transform in the reconstruction domain. 
Unlike the W-FDK algorithm, the algorithms described in 
[4] and [5] have the disadvantage that they require a 
rebinning to synthesize virtual projections of approximately 
double width from the original data to perform a high 
quality Hilbert transform. This property of the 
reconstruction algorithm prohibits an online reconstruction 
during data acquisition. However the ability of online 
reconstruction is an important feature for reconstruction 
algorithms in an interventional environment, as the result 
has to be available shortly after the last projection was 
acquired to influence the progress of the procedure. 
Therefore, we have reviewed the data extension step of [4] 
to provide an algorithm which enables online reconstruction 
without the disturbing reconstruction artifacts. 

II. RECONSTRUCTION ALGORITHM 

A. Large Volume Cone-Beam Reconstruction Formula 
This section starts with a review of the algorithm Kunze et 
al. described in [4] for the reconstruction of large FOV 
from data acquired with a displaced, equally spaced flat 
panel detector. This algorithm can be described as a 
generalization of the fan-beam inversion formula suggested 
in [6] to reconstruct the x-ray linear attenuation coefficient 
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)(λar  is the source position parameterized by the polar 
angle λ and α

r
 the unit vector directing from the source to 

the detector coordinate (u, v) 

222

)()()(
),,(

Dvu

eveueD
vu vuw

++

++−
=

λλλ
λα

rrr
r

, 

with )(λuer  a unit vector in row direction, )(λver  a unit 
vector in column direction and )(λwer  a unit vector ortho-
gonal to the detector, see figure 1. The detector coordinate 
(0, 0) corresponds to the orthogonal projection of the source 
point onto the detector. The distance between detector and 
source is D.  
In the following we assume that the detector is displaced in 
positive u direction. The detector could be totally displaced 
in one direction, so that only data for 0≥u  is considered. 
But for stability reasons, we use a small overlap εu2 so that 

),,( vug λ  is measured in the interval ];[ muuε− . 
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Fig. 1: Illustration of the cone-beam geometry 

 
Given a set of such projection data, the object density can 
be obtained according to [4] as follows: 

1. Compute the extended projection using the 
rebinning formula  
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2. Calculate the partial derivative of the extended 
data with respect to the parameter of the source 
trajectory 
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3. Multiply the differentiated data with a length 
correction weight 

222
),,(),,(

vuD

Dvugvug DC
++

= λλ  

4. Perform a Hilbert transform  
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Multiply the Hilbert transformed data with a 
smooth weighting function to suppress artifacts 
due to the data extension. 

),(),,(),,( uwvugvug FW λλλ =  

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤≤−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−<

=

ε

εε
ε

ε

ε

πλ

uu

uuu
u

uu
uu

uw

1
4

sin

0

),( 2  

5. Back project the filtered data using a linear 
distance weighting 
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where ( )** ,vu  are the coordinates of the cone 
beam projection of xr  onto the detector. 

B. Separate reconstruction of measured and extended 
data 

To achieve the goal of online reconstruction, it is necessary 
to process the measured data of a projection and its data 
extension separately, each at the moment when they can be 
retrieved.  
For that reason the extended projection ),,( vug E λ  needs 
to be written as a linear combination of the measured data 

),,( vug λ  and the data extension ),,( vuge λ  
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with ),,( vuλφ  a weighting function blending from the 
original data to the data extension. In the above reviewed 
algorithm ),,( vuλφ  is the Heaviside step function in the 
parameter u shifted by εu− . 
Due to the linearity of the reconstruction algorithm we can 
process both components of ),,( vug E λ  separately 
obtaining the volumes )(xfm

r
 of the measured projections 

and )(xfe
r

 of the projection extension. 

C. Approximate data extension 
In the algorithm described in section A, the data extension 
was done using a rebinning formula. This algorithm 
guarantees for the plane z = 0 an artifact free 
reconstruction, but is suboptimal with respect to 
computational effort and memory requirements: To be able 
to extend one projection several complementary projections 
are required. 
Therefore, we propose a different data extension scheme. 
Due to the large extend of truncation and due to the fact that 
many high frequent structures are typically located at the 
position of truncation in such a geometry, the commonly 
used data extension algorithms based on the fitting of the 
projections of circles or ellipses are not good choices [8]. 
In our case, however, we can make use of the additional 
knowledge about the object structure contained in the 
opposite projections. We thus propose to use the data 
acquired at the position πλ +  to extend the current 
projection. This extension can then be written as 

),,(),,( vugvuge −+= πλλ . 
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Thus only data from one single projection is used for the 
projection extension. 
Of course, this approach yields only a coarse approximation 
of the missing projection data. Note, however, that the 
extended data values are only required for the Hilbert 
filtering and not used during backprojection, so that the 
impact on image quality caused by this approximation is 
very low. 

D. Online reconstruction algorithm 
Using the linearity property of the reconstruction algorithm 
described in section B and the approximate data extension 
proposed in section C we propose the following online 
algorithm for a large FOV reconstruction using a displaced 
detector: 
First, the reconstruction algorithm of section A is applied 
for the weighted projection ),,(),,( vugvu λλφ  skipping 
step 1. Thus only the measured data for the projection at 
source position )(λar  are processed. 
In a second step, the same projection data are flipped to 
obtain the projection extension ),,( vuge πλ −  for the 
complementary source position )( πλ −ar . Note that λ is a 
polar angle and thus )(λar  is a π2  periodic function. After 
weighting with )),,(1( vuπλφ −− , they are processed 
once again by the algorithm of section A without step 1, but 
this time using the geometry of the source position 

)( πλ −ar . 
For ),,( vuλφ , a cosine square function is chosen, 
ramping down from 1 to 0 within the range from ]0;[ εu− . 

III. NUMERICAL EVALUATION 
We compared our new algorithm of section II D to the 
algorithm that has been suggested in [4]. 
In both algorithms, we implemented the differentiation 
(step 3) according to the scheme described in [9]. The 
Hilbert transform was computed using the half pixel shift 
formula; see for instance [10]. 
As test object we chose the Schaller head phantom [11]. 
Cone beam projections were simulated using the parameters 
listed in table 1. 
 

source isocenter distance R = 570 mm 

source detector distance D = 1200 mm 

detector pixel size Δu = Δv = 1 mm 

# of projections 720 

overlap  εu  = 25 mm 

Table 1: Geometry parameters used for data simulation 

Figure 2 presents two slices (at z = 0cm and z = -2.4cm) 
through the reconstructions of the head phantom. Note that 
the visible stripes are a result of the low number of the 
projections and are not caused by the displaced detector. 

Additionally to simulation studies we compared the 
reconstruction result using scanned phantoms. In figure 3 
the reconstruction result of an abdomen phantom is shown. 

IV. CONCLUSION 
We presented a new algorithm for full scan cone beam 
reconstruction using a displaced detector. The results are 
comparable to these of the algorithm described in [4] 
however the new algorithm enables an online 
reconstruction of the investigated object. This property is 
gained for the computational cost of one additional back 
projection; however the rebinning step could be skipped 
which allows online reconstruction, eases data handling and 
reduces memory requirements. 
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Fig. 2: Comparison of the reconstruction result using the proposed method (left) and method proposed in [4] (right) for z = 0 cm (top) and z = -2.4 cm (bottom) 
in the gray scale window [-100 HU; 100 HU] 

  

  
Fig. 3: Comparison of the reconstruction result using the proposed method (left) and method proposed in [4] (right) for z = 0 cm (top) and z = -2 cm (bottom) in 
the gray scale window [-200 HU; 400 HU] 
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Cone-beam Artifact Evaluation of the Factorization
Method

Frank Dennerlein and Frédéric Noo

Abstract— We present a quantitative and qualitative CB arti-
fact investigation of the factorization approach recently suggested
for image reconstruction in circular cone-beam computed tomog-
raphy. This investigation involves simulated data and for the first
time also phantom and clinical CB data acquired with a Siemens
C-arm scanner. For comparison, the results obtained with the
short-scan FDK method (for the simulated and real data) and
full-scan FDK (only for simulated data) are presented.

I. INTRODUCTION

It is well-known that CT image reconstruction in the short-
scan circular cone-beam geometry is an ill-posed problem,
because circular data acquisition does not yield a complete
set of the 3D Radon values of the investigated object. This
complete set, however, would be required for an exact and
stable reconstruction of the object density [1]. Missing Radon
data causes CB artifacts in the reconstruction results. The
strength and appearance of these artifacts depend on the
structure of the investigated object, but typically also differ
significantly from one reconstruction algorithm to another.

Many attractive algorithms have been suggested over the
years for short-scan CB reconstruction, see for instance [2]–
[4]. One recently introduced method is the factorization ap-
proach [5]. In this algorithm, the 3D problem is decomposed
into a set of independent 2D inversion problems using analyt-
ical steps. A solution to each 2D problem is then estimated
iteratively, involving a gradient-descent scheme with early
stopping regularization [5]. First numerical results indicated
that the factorization approach is fairly robust with respect to
the missing 3D Radon information [5].

In this paper, we will further investigate the CB artifact
behavior of the factorization approach in a typical C-arm
geometry, both from simulated and for the first time also from
real phantom as well as clinical CB data. For comparison, we
will show the reconstructions obtained with the widely-used
short-scan FDK method and also give results obtained with
full-scan FDK, as a benchmark, for the simulation studies.

II. PRELIMINARIES

In this section, we briefly summarize the geometrical set-up
of our study and present some details about the implementation
of the considered reconstruction methods. For an in-depth
description of these algorithms, however, we redirect the
reader to [6], [2] and [5], resp.

F. Dennerlein is with Siemens AG, Healthcare Sector, Forchheim, Germany
and F. Noo is with UCAIR, Dept. of Radiology, University of Utah, Salt
Lake City, USA. The work of F. Noo was supported by the NIH grant R21
EB009168. The concepts and information presented in this paper are based
on research and are not commercially available.

A. Geometrical Set-Up

In the following sections we will present reconstructions
from several distinct CB data sets. Each data set was acquired
(or, simulated) using a planar X-ray source trajectory of
circular shape. The symbol R denotes the trajectory radius,
and λ gives the angular position of the source during the scan.
Relative to the source trajectory, we introduce a right-hand-
sided x−y−z coordinate system such that the plane of the scan
is at z = 0mm. CB projections are collected/simulated in the
interval [λc − λs/2, λc + λs/2], with λs describing the short-
scan length and λc giving the central location on the source
trajectory. The polar angle increment between two adjacent
projections is denoted as ∆λ. We use a flat panel detector
with pixel size ∆u in horizontal and ∆v in vertical direction
and use the quantity D to describe the distance between X-ray
source and detector. See figure 1 for an illustration and table I
for the values of the introduced quantities applied during the
evaluation.

B. Implementation Details

For the results presented below, we applied the FDK meth-
ods with sinc-apodization on the ramp-filter kernel. Short-scan
FDK involved the Parker weighting scheme described in [7]
to approximately cope with redundant data.

The implementation of the Factorization approach is iden-
tical to that suggested in [5]. The algorithm described in that
paper requires the selection of five parameters, which we set to
ϵ = 0.01, α = 0.01, σ = 0.7, γthres = 0.002 and γmax = 400
for the presented evaluation.

Fig. 1. Top-view illustration of the considered CB acquisition geometry.
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TABLE I
GEOMETRY PARAMETERS FIXED DURING EVALUATION

simulation real data
trajectory radius [mm] R = 750 R = 750
detector-source distance [mm] D = 1200 D = 1200
angular increment [◦] ∆λ = 0.4 ∆λ = 0.4
detector pixel size [mm] 0.8 0.616
detector area [mm× mm] 336× 400 382× 296

III. CONE-BEAM ARTIFACT ASSESSMENT

A. Quantitative studies
This section presents a quantitative assessment of CB arti-

facts on simulated data sets of the FORBILD head phantom
without noise and without truncation. Artifact quantification
is based on comparing the reconstruction result fe to the
true object density function f using the concept of relative
reconstruction error that is here defined for each point x =
(x, y, z) at which f(x) ̸= 0 as

ϵ(x) =
fe(x)− f(x)

f(x)
. (1)

The distribution of this error over specific object regions will
be used to estimate the CB artifact level, as described below.

y [mm]

z 
[m

m
]

−100 −50 0 50 100

−50
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Fig. 2. Slice x = 0mm though the FORBILD head phantom. The two
dashed lines indicate the plane of the scan as well as the plane investigated
in Fig. 3.

In our study, we shifted the phantom so that its central slice
is at z = 40mm; see figure 2 and simulated data for a full
scan (to enable the benchmark reconstruction with full-scan
FDK) and for several short-scan realizations, all of them of
length λs = 210◦.

For the artifact study, we investigated image quality on a
slice by slice basis, using slices that are orthogonal to the z-
axis. Within each slice, a region Sz was defined that consists
of all points at which the true density f takes values between
30HU and 80HU and which are at least 0.5mm away from the
discontinuities in the object. CB artifacts were then quantified
using the distribution of the relative reconstruction error ϵ(x)
for x ∈ Sz; we here represent this distribution by its mean ϵ̄z
and its standard deviation ϵσz . Note that a mean value different
from ϵ̄z = 0 indicates a reconstruction bias while ϵσz describes
the heterogeneity of the CB artifact structure.

Figure 3 presents results for the short-scan centered at
λc = 0◦, next to the full-scan benchmark reconstruction. The
left column shows the reconstructed densities within the slice
z = 52.5mm. The corresponding distribution of ϵ within Sz

is presented in the histogram on the right. The two FOMs ϵ̄z
and ϵσz are indicated with a black circle and a black horizontal

line in each histogram, respectively. We observe that short-scan
FDK yields a fairly wide-spread error histogram, while in the
Factorization results, the distribution is much more compact
and closer to the reference reconstruction obtained with full-
scan FDK. Visually, the remaining artifacts of the Factorization
method tend to be of streak-like structure, thus affecting only
localized regions within the reconstructions. This behavior is
different from that of short-scan FDK, which comes with low-
frequency, more globally-distributed CB artifacts.

In short-scan geometries, CB artifacts typically vary with
the scan orientation. To address this issue, the quantification
described above was carried out for 6 short-scans with varying
scan center λc = {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}. Doing so,
we obtain for each slice 6 values ϵ̄z for the reconstruction bias.
These 6 values are summarized by their mean and standard
deviation. The top of figure 4 shows these two quantities as a
function of the slice z. The artifact heterogeneity is quantified
in a similar way, using for each slice the mean and standard
deviation of ϵσz across the 6 experiments; see the bottom of
figure 4 for an illustration of the artifact heterogeneity FOM.

As expected, all methods perform well close to the plane
of the scan, but farther away from this plane, in particular
where the object density varies significantly in z, the strength
of CB artifacts increases noticeably. For short-scan FDK, we
observe a strong bias (reaching up to 1.2%), a strong artifact
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Fig. 3. CB artifact assessment in the reconstructions of the FORBILD
head phantom. (Left) The slice z = 52.5mm in the gray-scale window
[0HU, 100HU] and (right) histograms of the relative reconstruction error
inside the region Sz . The horizontal bar in each histogram shows the first
moment (circle) and second moment (half-width of the bar) of the histogram.
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Fig. 4. The CB artifact FOMs (top) reconstruction bias and (bottom) artifact heterogeneity, as a function of z. The black circles indicate the mean of these
FOMs across 6 CB data sets with different short-scan center λc, while the errorbars illustrate the FOM standard deviations across these 6 different data sets.
From (left) to (right): the short-scan FDK method, the Factorization method and full-scan FDK.

Fig. 5. Reconstruction from the real C-arm data sets in scenario A (left) and scenario B (center and right), obtained with (bottom) short-scan FDK and
(top) the factorization approach. The results are presented selecting grayscale-windows such that the mean of the reconstructed values in specific ROIs gave
identical gray values in both images. One such ROI is illustrated in the images on the left side. The arrows highlight some regions where short-scan FDK
shows strong CB artifacts.

heterogeneity of maximum 3% and a high sensitivity to the
scan orientation; see the long error-bars in the corresponding
plots. In the factorization results, the strength of CB artifacts is
fairly independent of the actual scan realization, and artifact
heterogeneity is always less than 1.5%. The most sigificant
advantage of the factorization approach, however, is that it
yields a very low reconstruction bias, even at higher z. In this
property, it outperforms both, full-scan and short-scan FDK.

B. Real Data Reconstruction
We now present several reconstructions from real short-scan

CB data collected on commercially-available C-arm systems

(Siemens AXIOM Artis [8]) for visual inspection of image
quality. Compared to the simulated data, the real data contains
inconsistencies due to physical effects as well as potential
deviations from the ideal circular acquisition geometry. Our
focus is to see if the factorization method can handle these
inconsistencies robustly and retain its image quality benefits
compared to short-scan FDK.

In a first, pre-clinical study, we scanned a fairly wide physi-
cal thorax phantom using a short-scan of length λs = 215◦ and
using two distinct scenarios of truncation. In scenario A, the
projection of the thorax was never truncated across the upper
detector boundary and transaxial truncation occurred only
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Fig. 6. Clinical data sets, reconstructed with (bottom) short-scan FDK and (top) the factorization approach, in identical grayscale windows. The white arrows
again highlight artifact regions in the short-scan FDK results.

towards the ends of the short-scan. In scenario B, CB data were
always truncated in axial direction, but transaxial truncation
occurred closer to the short-scan center only. Figure 5 presents
the reconstruction results in both scenarios on vertical planes,
each of which was obtained by averaging 3 planar results
that are spaced by 0.25mm. The averaging reduces noise and
contributes to a better visibility of potential CB artifacts in the
images.

Our second study involved two clinical head data sets
acquired at the Department of Neuroradiology, University of
Erlangen1. Figure 6 presents three vertical slices of thickness
3mm through the reconstructions as obtained with the two
algorithms under comparison.

From these results, we observe that the short-scan FDK
approach yields fairly strong artifacts tangent to the bony
object structures, as indicated with the white arrows. The fac-
torization approach shows a clear reduction of these artifacts
and also more tolerance with respect to transaxial truncation
(as can be seen in the thorax reconstructions) and thus,
altogether, a noticeable improvement of image quality. This
improvement becomes particularly visible in the subcranial
regions in the clinical data sets.

IV. CONCLUSIONS

In this paper, we investigated in more details the CB artifact
behavior of the factorization method recently suggested for
short-scan circular CB CT. We carried out a quantitative
artifact assessment that demonstrated that the Factorization
approach comes with very low reconstruction bias compared to
short-scan FDK and that it even outperforms full-scan FDK in

1The authors thank Dr. med. Tobias Struffert, Department of Neuroradiol-
ogy, University of Erlangen, for providing the clinical patient data sets.

that property. In addition, the Factorization method turns out to
be less sensitive to the short-scan orientation than Feldkamp’s
approach.

The image quality improvements observed in the simulation
study also hold for medical data sets, as demonstrated on the
reconstructions of a physical thorax phantom and of neuro
data sets acquired with Siemens AXIOM Artis C-arm systems.
These benefits for clinical applications were not obvious,
since the real CB data contains various physical effects that
are inconsistent with the data model that the Factorization
approach strongly relies on. Despite these inconsistencies, the
Factorization approach significantly reduced the CB artifacts
that are present in the short-scan FDK results close to the
vertebrae and in the subcranial regions. The Factorization
approach might thus be a viable alternative to achieve 3D
image reconstruction on commercial scanners.
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ABSTRACT 

 

We present a classical reconstruction formula of I.M. 

Gel’fand and M.I. Graev in a 3D setting for easy access and 

related research. Simulation will be reported to show effects 

of the pseudo-differential operators, evaluate quality of 

reconstructed images and serve as a basis for extensions. 

 

Index Terms— X-ray transform, computed tomography 

(CT), image reconstruction, pseudo-differential operator. 

 

 

1. INTRODUCTION 

 

In a series of papers [1-3] and a classical book [4] I.M. 

Gel’fand, M.I. Graev and others proved inversion formulas 

for x-ray transforms of various dimensions in different 

spaces. In particular, Gel’fand-Graev’s inversion formula 

[1] is based on a fundamental relationship which expresses 

projection data as a Hilbert transform. This finding was re-

discovered in recent years; see [5-9]. It has wide and crucial 

applications in CT reconstruction, including truncated 

reconstruction [10-11], backprojection filtration (BPF) [12], 

interior tomography [13-17], and limited-angle tomography 

[18]. For a survey of these results, please see [19-20].  

      Despite its high originality and information density, 

Gel’fand-Graev’s inversion formula [1] was cast in high 

dimensions and specialized terms and is rather difficult even 

for some dedicated engineers to follow.  In this report, we 

will focus on [1] and represent their inversion formula and 

its proof for the 1D x-ray transform in a 3D real space in a 

relatively engineer-friendly language. Clearly, this 3D 

setting is the most relevant to biomedical imaging 

           

2. NOTATION 

 

We follow the notations in [1]. Set 𝑛 = 3, 𝑘 = 1, 𝛼 = 𝛼1 ∈
ℝ3 non zero, and 𝛽 ∈ ℝ3. Then, ℎ: 𝑥 = 𝛼𝑡 + 𝛽, 𝑡 ∈ ℝ, is a 

straight line. Let 𝑓 be a function on ℝ3. Then, the 1D x-ray 

projection is an integral transform 𝑓 ↦ ℛ𝑓 given by  

ℛ𝑓 𝛼,𝛽 =  𝑓 𝛼𝑡 + 𝛽 
ℝ

𝑑𝑡.   (1) 

Let us describe the relation between 𝛼,𝛽 and ℛ𝑓 in a formal 

way.  

Denote by 𝐻1,3 the manifold of lines ℎ in ℝ3. Then, 

dim𝐻1,3 = 4. Denote by 𝐺1,3 the Grassman manifold of 1D 

subspaces in ℝ3, which defines a natural mapping 

𝜋: 𝐻1,3 → 𝐺1,3   by translating a line ℎ ∈ 𝐻1,3 to the line 

𝑎 ∈ 𝐺1,3 through the system origin. Clearly, dim𝐺1,3 = 2. 

We denote ℝ3 − {𝑂} by 𝐸1,3, the manifold of 1-frames, 

in the sense that any 𝛼 ∈ 𝐸1,3 defines a 1D coordinate 

system in the line 𝑎: 𝑥 = 𝛼𝑡, 𝑡 ∈ ℝ, in 𝐺1,3. Then any 

 𝛼,𝛽 ∈ 𝐸1,3 × ℝ3 defines a line ℎ ∈ 𝐻1,3 by 𝑥 = 𝛼𝑡 + 𝛽, 

𝑡 ∈ ℝ as before, and we denote this by 𝜎:  𝛼,𝛽 ↦ ℎ.  Two 

 𝛼,𝛽 ,  𝛼′,𝛽′ ∈ 𝐸1,3 × ℝ3 define the same ℎ if and only if 

𝛼 ′ = 𝐴𝛼, 𝛽′ = 𝛽 + 𝛼𝑡0 for some 𝐴 ∈ ℝ − {𝑂}, 𝑡0 ∈ ℝ.  (2) 

Consider a function 𝜑 = ℛ𝑓 on 𝐻1,3. Denote by 𝜎∗ the 

mapping 𝜎∗: 𝜑 ℎ ↦ 𝜑 𝛼,𝛽 = 𝜑 𝜎 𝛼,𝛽  . The image of 

𝜎∗ is the set of functions on 𝐸1,3 × ℝ3 which are invariant 

under (2).  

Define a differential 1-form 𝜘𝜑 on 𝐸1,3 × ℝ3 by 

𝜘𝜑 =  
𝜕𝜑  𝛼 ,𝛽 

𝜕𝛽 𝑗
3
𝑗=1 𝑑𝛼 𝑗 ,    (3) 

where 𝛼 =  𝛼1,𝛼2,𝛼3  and 𝛽 =  𝛽1 ,𝛽2,𝛽3 . We note that  

ℛ𝑓 𝛼 ′ ,𝛽′ =  𝑓 𝛼 ′𝑡 + 𝛽′ 
ℝ

𝑑𝑡  

     =  𝑓 𝐴𝛼𝑡 + 𝛽 + 𝛼𝑡0 ℝ
𝑑𝑡 =  𝑓 𝛼 𝐴𝑡 + 𝑡0 + 𝛽 

ℝ
𝑑𝑡  

     =
1

𝐴
 𝑓 𝛼𝑡 + 𝛽 
ℝ

𝑑𝑡 =
1

𝐴
 ℛ𝑓 𝛼,𝛽 .   

Thus, 

 
𝜕𝜑  𝛼′ ,𝛽′ 

𝜕𝛽′ 𝑗
3
𝑗=1 𝑑𝛼′𝑗 =

1

𝐴
 

𝜕𝜑  𝛼 ,𝛽 

𝜕𝛽′ 𝑗
3
𝑗=1 𝑑𝛼′𝑗   

     =  
𝜕𝜑  𝛼 ,𝛽 

𝜕𝛽 𝑗
3
𝑗=1 𝑑𝛼 𝑗 , 

i.e., the differential form 𝜘𝜑 depends on ℎ = 𝜎 𝛼,𝛽  only 

and is independent of the choice of  𝛼,𝛽 . In other words, 

𝜘𝜑 is a differential form on 𝐻1,3.  

Let 𝐻0 be the manifold of oriented 1D lines in ℝ3 

through the origin. Since the oriented lines have directions, 
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𝐻0 is diffeomorphic to the unit sphere 𝑆2 in ℝ3. Fix a 1D 

oriented submanifold 𝛾 ⊂ 𝐻0. Then, 𝛾 is an oriented curve 

on 𝑆2. For any vector 𝑥 ∈ ℝ3, denote by 𝑥 + 𝛾 the manifold 

of oriented lines shifted from those in 𝛾 to 𝑥. 𝑥 + 𝛾 is 

diffeomorphic to an oriented curve on the unit shpere 

centered at 𝑥. Define an operator 𝓙𝜸 on 𝜑 = ℛ𝑓 by  

 𝒥𝛾𝜑  𝑥 =
1

2𝜋𝑖
 𝜘𝜑
𝑥+𝛾

.    (4) 

Note that  𝒥𝛾 = 0 for any closed curve 𝛾, and hence 𝒥𝛾  

depends only on the end points of 𝛾.  

Take 𝜉 ∈ ℝ3 − {𝑂}. Denote by 𝐺𝜉  the manifold of all 

subspaces ℎ ∈ 𝐻0 of ℝ3 belonging to the plane  𝜉, 𝑥 = 0. 

Then, 𝐺𝜉  is diffeomorphic to the large circle on the sphere 

𝑆2 intersecting the plane  𝜉, 𝑥 = 0, oriented by the right-

hand rule with 𝜉 pointing to the direction of the thumb. Note 

that dim 𝛾 = dim 𝐺𝜉 = 1.  

Now let us define the intersection index 𝛾 ∙ 𝐺𝜉  of 𝛾 and 

𝐺𝜉 . An intersection of 𝛾 and 𝐺𝜉  contributes 1 to the 

intersection index if 𝛾 and 𝜉 point to the same side of 𝐺𝜉  

looking from the origin. An intersection contributes −1 if if 

𝛾 and 𝜉 point to opposite sides of 𝐺𝜉  looking from the 

origin. Define the Crofton function by Crf𝛾  𝜉 = 𝛾 ∙ 𝐺𝜉 . 

Note that Crf𝛾 𝜉 = 0, ±1, and Crf𝛾 −𝜉 = −Crf𝛾 𝜉 .  

  

 

3. PSEUDO-DIFFERENTIAL OPEARATORS 

 

Let 𝑃 𝐷 =  𝑎𝑛𝑛 𝐷𝑛  be a linear differential operator with 

constant coefficients 𝑎𝑛 , acting on smooth functions on ℝ3. 

Here 𝑃 𝜉 =  𝑎𝑛𝑛 𝜉𝑛  is a polynomial of three variables 

with  

𝑛 =  𝑛1 ,𝑛2,𝑛3 , 𝜉 =  𝜉1 , 𝜉2 , 𝜉3 , 𝜉
𝑛 = 𝜉1

𝑛1𝜉2
𝑛2𝜉3

𝑛3 ,  

𝐷 = (−𝑖𝜕1,−𝑖𝜕2,−𝑖𝜕3), 𝐷𝑛 =  −𝑖𝜕 1
𝑛1 −𝑖𝜕 2

𝑛2 −𝑖𝜕 3
𝑛3 . 

Then, by the Fourier inversion formula 

𝑃 𝐷 𝑢 𝑥 =
1

 2𝜋 3  𝑑𝜉
ℝ3  𝑒𝑖 𝑥−𝑦 ∙𝜉𝑃 𝜉 𝑢 𝑦 

ℝ3 𝑑𝑦. 

A pseudo-differential operator 𝐶 𝐷  on ℝ3 is defined by 

𝐶 𝐷 𝑢 𝑥 =
1

 2𝜋 3  𝑑𝜉
ℝ3  𝑒𝑖 𝑥−𝑦 ∙𝜉𝐶 𝜉 𝑢 𝑦 

ℝ3 𝑑𝑦  

=
1

 2𝜋 3/2  𝑒𝑖𝑥 ∙𝜉𝐶 𝜉 𝑢  𝜉 𝑑𝜉
ℝ3    (5) 

for a certain function 𝐶 𝜉  which is called the symbol of 

the pseudo-differential operator 𝐶 𝐷 . 

Theorem 1. (Gel’fand and Graev [1]) The composition 

operator 𝒥𝛾ℛ defined by (1) and (4) is a pseudo-differential 

operator on ℝ3 with symbol Crf𝛾 𝜉 . 

Proof.  By (1), (3) and (4),  

(𝒥𝛾ℛ𝑓) 𝑥 =
1

2𝜋𝑖
  𝑑𝛼 𝑗3

𝑗=1𝛾
 

𝜕𝑓  𝛼𝑡+𝑥 

𝜕𝑥 𝑗
𝑑𝑡

ℝ
. (6) 

Since 

𝑓  𝜉 =
1

 2𝜋 3/2  𝑒−𝑖𝑥 ∙𝜉𝑓 𝑥 𝑑𝑥
ℝ3 , 

𝑓 𝑥 =
1

 2𝜋 3/2  𝑒𝑖𝑥 ∙𝜉𝑓  𝜉 𝑑𝜉
ℝ3 , 

we have 

 
𝜕𝑓  𝛼𝑡+𝑥 

𝜕𝑥 𝑗
𝑑𝛼 𝑗3

𝑗=1   

=
𝑖

 2𝜋 3/2
   𝑒𝑖 𝛼𝑡+𝑥 ∙𝜉𝑓  𝜉 𝜉𝑗𝑑𝜉

ℝ3  𝑑𝛼 𝑗3
𝑗=1 . 

Back to (6), we have  

(𝒥𝛾ℛ𝑓) 𝑥  

=
1

 2𝜋 5/2  𝑑𝑡
ℝ

  𝜉,𝑑𝛼 
𝛾

 𝑒𝑖 𝛼𝑡+𝑥 ∙𝜉𝑓  𝜉 𝑑𝜉
ℝ3  (7) 

      =
1

 2𝜋 3/2  𝛾  𝑒𝑖 𝛼𝑡+𝑥 ∙𝜉𝑓  𝜉 𝛿  𝜉,𝛼  𝑑𝜉
ℝ3 ∧  𝜉,𝑑𝛼 . 

Here we used the fact that 
1

2𝜋
 𝑒𝑖𝛼 ∙𝜉𝑡𝑑𝑡
ℝ

= 𝛿  𝜉,𝛼  . 

Therefore, by (7) 𝒥𝛾ℛ is a pseudo-differential operator with 

symbol 

𝐶 𝜉 =  𝛿  𝜉,𝛼   𝜉,𝑑𝛼 
𝛾

=
1

2𝜋
 𝑑𝑡
ℝ

 𝑒𝑖𝛼 ∙𝜉𝑡  𝜉,𝑑𝛼 
𝛾

. 

We want to prove that 𝐶 𝜉 = Crf𝛾 𝜉  for 𝜉 ∈ ℝ3 − {𝑂}.  

To that effect, we only need to prove 𝐶 𝜉 = Crf𝛾 𝜉  for 

a small local piece of 𝛾. Now, we can use a local coordinate 

system for 𝛾. Let 𝑠, 𝑠1 ≤ 𝑠 ≤ 𝑠2, be a variable. For each 

oriented line ℎ(𝑠) ∈ 𝛾 denote by 𝛼(𝑠) its basis, depending 

on 𝑠 smoothly. Set 𝑢 𝑠 =  𝜉,𝛼(𝑠) . Then  

𝐶 𝜉 =  𝛿 𝑢 𝑠  
𝑑𝑢

𝑑𝑠
𝑑𝑠

𝑠2

𝑠1
=

1

2𝜋
 𝑑𝑡
ℝ

 𝑒𝑖𝑡𝑢 (𝑠) 𝑑𝑢

𝑑𝑠
𝑑𝑠

𝑠2

𝑠1
. 

If 𝛾 does not intersect 𝐺𝜉 , 𝑢 𝑠  is never zero, and hence  

  𝛿 𝑢 𝑠  
𝑑𝑢

𝑑𝑠
𝑑𝑠

𝑠2

𝑠1
= 0.  

If  𝛾 intersects 𝐺𝜉  once, from  

  𝛿 𝑢 𝑠  
𝑑𝑢

𝑑𝑠
𝑑𝑠

𝑠2

𝑠1
=  𝛿 𝑢 𝑑𝑢

𝑏

𝑎
,  

where 𝑎 = 𝑢 𝑠1 =  𝜉,𝛼(𝑠1)  and 𝑏 = 𝑢 𝑠2 =  𝜉,𝛼(𝑠2) , 
we get 𝐶 𝜉 = 1 if 𝑎 < 0 < 𝑏, and 𝐶 𝜉 = −1 if 𝑎 > 0 >
𝑏, which is exactly Crf𝛾 𝜉 .  

Alternatively, we may compute 

𝐶 𝜉 =
1

2𝜋
 𝑑𝑡
ℝ

 𝑒𝑖𝑡𝑢 (𝑠) 𝑑𝑢

𝑑𝑠
𝑑𝑠

𝑠2

𝑠1
  

=
1

2𝜋
 𝑑𝑡
ℝ

 𝑒𝑖𝑡𝑢𝑑𝑢
𝑏

𝑎
=

1

2𝜋𝑖
 

𝑒 𝑖𝑏𝑡 −𝑒 𝑖𝑎𝑡

𝑡
𝑑𝑡

ℝ
,  (8) 

which is a Froullani integral. Eqn.(8) is = 0 if 𝑎 and 𝑏 are of 

the same sign,  = 1 if 𝑎 < 0 < 𝑏, and = −1 if 𝑎 > 0 > 𝑏. 

Consequently, we see 𝐶 𝜉 = Crf𝛾 𝜉 , and Theorem 1 

follows. ▄ 

 

4. INERSION FORMULA 

 

First, we have a corollary. 

Corollary. (Gel’fand and Graev [1]) For two oriented 

1D submanifolds 𝛾1 and 𝛾2, the symbol of the pseudo-

differential operator  𝒥𝛾1
ℛ  𝒥𝛾2

ℛ  is  

 𝐶 𝜉 = Crf𝛾1
 𝜉 Crf𝛾  𝜉 . 

Proof. This is the composition law of pseudo-differential 

operators. In fact, by (5) we have 
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𝐶1 𝐷 𝐶2 𝐷 𝑢 𝑥   

       =
1

 2𝜋 3/2  𝑒𝑖𝑥 ∙𝜉𝐶1 𝜉  𝐶2 𝐷 𝑢 
∧ 𝜉 𝑑𝜉

ℝ3   

       =
1

 2𝜋 3/2  𝑒𝑖𝑥 ∙𝜉𝐶1 𝜉 𝐶2 𝜉 𝑢  𝜉 𝑑𝜉ℝ3 . ▄ 

  

A 1D submanifold 𝛾 ⊂ 𝐻0 is called a quasicycle if 

 Crf𝛾  𝜉   is a constant function for almost every 𝜉. In 

particular, 𝛾 is a quasicycle if  𝛾 ∩ 𝐺𝜉  = 1 for almost all 

𝜉 ∈ ℝ3 − {𝑂}. This is the case when 𝛾 is a smooth curve on 

𝑆2 whose end points are diametrically opposite: 𝛾 𝑠2 =

−𝛾 𝑠1 . For a quasicycle 𝛾, denote the constant  Crf𝛾 𝜉   by 

𝑐 𝛾 . Note that in this case Crf𝛾 𝜉  itself is not a constant in 

general.  

By the Corollary, if 𝛾 is a quasicycle, then the symbol of 

 𝒥𝛾ℛ 
2
 is  

 Crf𝛾 𝜉  
2

=  Crf𝛾 𝜉  
2

= 𝑐 𝛾 2, 

which is a constant. A pseudo-differential operator with a 

constant symbol 𝑐 𝛾 2 is indeed 𝑐 𝛾 2𝐸, where 𝐸 is the 

identity operator, by the Fourier inversion formula. 

Therefore, we have proved an inversion formula for the x-

ray transform ℛ. 

Theorem 2. (Gel’fand and Graev[1]) If 𝛾 is a quisicycle 

in 𝐻0, then  𝒥𝛾ℛ 
2

= 𝑐 𝛾 2𝐸. Thus, for the integral 

transform 𝑓 ↦ 𝜑 =  ℛf, one has the inversion formula 

𝒥𝛾ℛ𝒥𝛾𝜑 = 𝑐 𝛾 2𝑓.                                                 (9)  

We remark that (9) is essentially the BPF reconstruction 

formula for any scanning curve that is a quasicycle. 

 

5. HILBERT TRASNFORM 

 

Back to (7) and (8), we have  

   (𝒥𝛾ℛ𝑓) 𝑥 =
1

 2𝜋 3/2  𝑒𝑖𝑥 ∙𝜉𝑓  𝜉 𝑑𝜉
ℝ3   

  ×
1

2𝜋𝑖
  𝑒𝑖𝑡 𝜉 ,𝛼 𝑠2  − 𝑒𝑖𝑡  𝜉 ,𝛼 𝑠1   

𝑑𝑡

𝑡ℝ
. 

By the Fourier inversion formula, 

(𝒥𝛾ℛ𝑓) 𝑥   

 =
1

2𝜋𝑖
PV   𝑓 𝛼 𝑠2 𝑡 + 𝑥 − 𝑓 𝛼 𝑠1 𝑡 + 𝑥  

𝑑𝑡

𝑡ℝ
    (10) 

which shows a Hilbert transform. Our computation in (8) 

shows that the symbol of 𝒥𝛾ℛ is 

 𝐶 𝜉 =
1

2
 sgn 𝜉,𝛼 𝑠2  − sgn 𝜉,𝛼 𝑠1   . 

Here the PV integral takes Cauchy principal values.  

      After [1], Eqn. (10) was re-proved by Rullgård in the 

case of exponential Radon transform for single photon 

emission computed tomography [5], and also in the standard 

and non-standard helical cone-beam CT cases [7-10, 21-24]. 

Note that as in [10], two boundary terms will appear in (10) 

if the projection (1) is replaced by an integral on [0,∞). 

Important related results were also reported [25-32]. For 

more details, please refer to [33].    

 

6. NUMERICAL SIMULATION 

 

Because the Gel’fand and Graev reconstruction formula has 

major implications for biomedical tomography, we 

performed a numerical study to evaluate its computational 

effects and reconstruction results. Our simulator was 

implemented in MatLab. To demonstrate its validity, we 

performed several numerical tests assuming a circular 

scanning locus of radius 57.0 cm in fan-beam geometry. The 

object was a modified Shepp-Logan phantom in a compact 

support with a radius of 10.0 cm. We used an equi-spatial 

virtual detector array of length 20.0 cm. The detector was 

centered at the system origin and made perpendicular to the 

direction from the system origin to the x-ray source. For 

each of our selected numbers of projections over a full-scan 

range, we equi-angularly acquired the corresponding 

projection dataset.  We compared reconstructions obtained 

using the Gel’fand and Graev formula with the involved 

pseudo-differential operators and our previously 

implemented BPF software, respectively.  Our results are in 

agreement but with different numerical textures and noise 

performance. 

 

7. DISCUSSIONS AND CONCLUSION 

 

The Gel’fand and Graev formula is a reconstruction strategy 

valid not only in the real 3D world but also higher 

dimensions. Numerical implementation of this formula in 

higher dimensions would be an interesting undertaking and 

may have practical applications.  Potentially, this approach 

could also be a powerful modeling tool for some 

complicated phenomena. 

     The Gel’fand and Graev formula assumes that the Radon 

transform is not truncated.  Recently, our group and others 

are actively working on interior tomography to deal with 

truncated projections[13, 34-35].  A possibility is that we 

may extend the Gel’fand and Graev formula into an 

“interior” reconstruction framework.  We are investigating 

along this direction. 

      In conclusion, we have interpreted the Gel’fand and 

Graev formula in the 3D setting.  Hopefully, the deep 

insights and novel tools developed by them may inspire 

further work in the CT field.  This case study also shows the 

importance of mathematics for tomographic imaging, the 

synergy between mathematicians and engineers, and the 

practical benefits of a pure theoretical finding, which, at the 

first glance, may appear quite irrelevant to daily healthcare. 
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Evaluations of a 2D inverse Hilbert Transform
Harald Schöndube∗, Karl Stierstorfer∗, and Frédéric Noo†

Abstract—We evaluate a new two-dimensional inverse Hilbert
transform formula for the use in reconstruction algorithms
based on the differentiated backprojection (DBP). As opposed
to using traditional one-dimensional inverse Hilbert transform
approaches this new formula would allow greater flexibility
in the arrangement of the backprojection grid. In this paper,
we introduce the new formula and compare its performance
with using a one-dimensional approach, especially in terms of
their discrete implementations. Since our focus is specifically on
evaluating the properties of the inverse Hilbert transform, which
are independent from the data acquisition geometry, we limit our
considerations to the two-dimensional parallel beam geometry.
The application of our results to other geometries, such as helical
cone-beam CT, is straightforward.

I. INTRODUCTION

The differentiated backprojection (DBP) with a subsequent
inverse Hilbert transform (HT) [1]–[4] has recently received
attention as a theoretically-exact and stable (TES) reconstruc-
tion method for helical cone-beam computed tomography (CT)
[5]–[8]. The method appears especially attractive because of its
capability to perform a TES reconstruction using all measured
data at arbitrary pitch [9], [10].

In contrast to standard FBP-type algorithms, the DBP does
not yield a reconstruction of the object function f(x) directly,
but rather the HT of f(x) along M-lines, where an M-line is
any line that connects a source position with a point on the
detector. To achieve the reconstruction of f(x), an inverse HT
has to be applied after the DBP is performed. In this paper,
we focus on this second part of the two-step DBP-HT method.

In all implementations of the DBP-HT method published so
far, the direction of the M-lines had to be aligned with either
the rows or the columns of the image for the inverse HT to
be performed. For helical cone-beam CT, this means that at
least one interpolation from the M-line geometry to Cartesian
coordinates has to be performed after application of the inverse
HT to obtain a reconstruction result in Cartesian coordinates
[6], [9]; however, this interpolation comes at the cost of a
possible loss of resolution. Furthermore, depending on the
exact formulation of the DBP chosen for backprojection, an
arrangement of the backprojection geometry such that the
image rows and columns are perpendicular to the x and
y axis of the Cartesian coordinates, respectively, may be
advantageous [6]. In this case two interpolation steps are
necessary to obtain a reconstruction in Cartesian coordinates,
one before and one after the inverse HT.

Manuscript received February 1st, 2010. This work was supported in part
by the U.S. National Institutes of Health (NIH) under grant R21 EB009168,
and in part by Siemens Healthcare. Its contents are solely the responsibility
of the authors and do not necessarily represent the official views of the NIH.
∗Siemens Healthcare, Computed Tomography, Forchheim, Germany
†Department of Radiology, University of Utah, Salt Lake City, USA
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In this paper, we examine the use of a new approach of per-
forming the inverse Hilbert transform. This approach is based
on a two-dimensional filtering in Fourier domain and does not
require the image to be aligned with the direction of the M-
lines. The paper is organized as follows: In section II a short
description of the DBP-HT method and the one-dimensional
inverse HT employed in [6], [9], [10] will be given. Section III
introduces our new two-dimensional approach. In section IV
an evaluation of the new method and a comparison with
the classical one-dimensional approach will be presented. A
discussion of our results in section V concludes this paper.

Since our focus is specifically on evaluating the properties
of the inverse Hilbert transform, which are independent from
the data acquisition geometry, we limit our considerations and
evaluations in this paper to the two-dimensional parallel beam
geometry. The application of our results to other geometries,
such as helical cone-beam CT, is straightforward.

II. THE DBP-HT METHOD

A. The differentiated backprojection

Let g(ϑ, r) denote the sinogram of the two-dimensional
object function f(x), i.e.,

g(ϑ, r) = (Rf)(ϑ, r) =

∫ ∞
−∞

f(rθ + tθ⊥) dt, (1)

where (Rf)(ϑ, r) denotes the Radon transform of f(x) and
where ϑ ∈ [0, 2π) is an angle that defines the two unit vectors
θ(ϑ) = [cos(ϑ), sin(ϑ)]T and θ⊥(ϑ) = [− sin(ϑ), cos(ϑ)]T .
Note that both of those vectors depend on ϑ as indicated,
but we usually drop this explicit dependence to enhance
readability of the equations. Furthermore, r denotes a scalar
with r ∈ [−RFOV, RFOV], where RFOV denotes the radius of
the CT field-of-view.

It can then be shown that the following expression for the
two-dimensional DBP in parallel beam geometry holds [3]:∫ ϑ1+π

ϑ1

g′(ϑ, x · θ) dϑ = −2−
∫ ∞
−∞

1

t
f(x− tθ⊥1 ) dt, (2)

where

g′(ϑ, r) :=
∂

∂r
g(ϑ, r) (3)

and θ⊥1 is a short-hand notation for θ⊥(ϑ1). Analogously we
will later also use θ1 as a short-hand notation for θ(ϑ1). Note
that ϑ1 can assume any value in equation 2, since g(ϑ, r)
is 2π-periodic in ϑ. The integral on the right hand side of
equation 2 can be interpreted as applying a Hilbert transform
along direction θ⊥1 to f(x) as can be seen when considering
a rotated (s, τ) coordinate system, i.e., performing the change
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of variables x = sθ1 + τθ⊥1 :

−
∫ ∞
−∞

1

t
f(x− tθ⊥1 ) dt = π−

∫ ∞
−∞

1

πt
f
(
sθ1 + (τ − t)θ⊥1

)
dt

(4)

= π(Hf)(sθ1 + τθ⊥1 , θ
⊥
1 ) (5)

= π(Hf)(x, θ⊥1 ), (6)

where the integral sign with a dash denotes an integral that
has to be interpreted in the sense of a Cauchy principal value
[11].

While this application of the Hilbert transform, which is
a one-dimensional transform, to a two-dimensional image
may seem counterintuitive, the concept can be understood
when interpreting the image as consisting of one-dimensional
functions which are combined together to form the two-
dimensional image. In other words, the Hilbert transform of a
two-dimensional image f(x) along the direction of θ⊥1 can be
interpreted as a union of independent one-dimensional Hilbert
transforms. In that sense, (Hf)(x, θ⊥1 ) denotes the value at
point x of the Hilbert transform of f(x) along the line of
direction θ⊥1 and containing x. Equation 2 therefore yields∫ ϑ1+π

ϑ1

g′(ϑ, x · θ) dϑ = −2π · (Hf)(x, θ⊥1 ). (7)

B. The finite inverse Hilbert transform

As described by equation 7 the DBP does not yield the
object function f(x) directly, but rather its Hilbert trans-
form along a unit vector θ⊥1 . To achieve a reconstruction
of f(x) we thus need to find a way to compute f(x) from
(Hf)(x, θ⊥1 ). While the HT of a function k(t) is its own
inverse up to a factor of −1, this direct approach can only
be applied if (Hk)(t) is known for all t ∈ (−∞,∞), since
the HT of a bounded function is generally unbounded. In our
DBP-HT implementations we use a modified, more practical,
approach called finite inverse Hilbert transform, which was
first published by Söhngen in 1937 [12] and which yields
f(x) from (Hf)(x, θ⊥1 ) in a theoretically-exact and stable
way if f(x) is strictly contained within the FOV, i.e., if
f(x) = 0 ∀ x ∈ {x |‖x‖ ≥ RFOV}.

Using the rotated coordinate system with change of vari-
ables x = sθ1 + τθ⊥1 Söhngen’s formula reads

f(sθ1 + τθ⊥1 ) =
1√

tR(s)2 − τ2

[
C(s)

−−
∫ tR(s)

−tR(s)

(Hf)(sθ1 + tθ⊥1 , θ
⊥
1 )

π(τ − t)
√
tR(s)2 − t2 dt

]
, (8)

where tR(s) =
√
R2

FOV − s2. The function C(s) can be
computed directly from the sinogram data according to the
equation

C(s) =

∫∞
−∞ f(sθ1 + τθ⊥1 ) dτ

π
. (9)

Note that equation 8 only requires knowledge of
(Hf)(x, θ⊥1 ) over that part of the line which goes through
x along the direction of θ⊥1 that is inside the FOV. It thus

allows to compute f(x) from (Hf)(x, θ⊥1 ) as obtained by
the DBP according to equation 7, namely by performing a
one-dimensional finite inverse Hilbert transform along the line
of direction θ⊥1 which contains x. If the application of a 1D
inverse HT is desired, the best choice for ϑ1 is thus such that
the resulting filtering direction θ⊥1 is along one of the axes of
the desired reconstruction grid, as in this case the inverse HT
can be performed directly along either the rows or the columns
of the backprojection result.

C. Implementing the inverse HT in 1D

Apart from some weighting functions, for which the imple-
mentation for discrete data is straightforward, the finite inverse
Hilbert transform according to equation 8 essentially consists
of a convolution with 1

πt and of finding the value of C(s).
As shown in equation 9, the latter can directly be computed
from the sinogram (or fanogram) data; in practice this step is
implemented using a (bi-) linear interpolation. The convolution
is performed as a discrete convolution of the band-limited
Hilbert kernel

ĥhilb(t) = −
∫ νg

−νg
(−i sign(ν))ei2πνt dν (10)

with (Hf)(sθ1 + tθ⊥1 , θ
⊥
1 ).

One important property of this implementation is that if
∆t = ∆r, the straightforward application of equation 10
results in severe Gibb’s or ringing artifacts in the resulting
image (see figure 1), whereas those artifacts disappear if a half-
pixel shift is employed in the discrete convolution (i.e., using
ĥhilb(t + ∆t/2) as a convolution kernel instead of ĥhilb(t))
[3]. An explanation of this somewhat surprising behavior has
been given in [14]: the authors examined the behavior of
ĥhilb(t) in Fourier domain and found that, apart from the
jump discontinuity at ν = 0, which is intrinsic to the Hilbert
transform, this kernel also features jump discontinuities in
Fourier domain at ν = ±νg , which induce ringing artifacts. In
contrast, these discontinuities can be avoided if a half-pixel
shift is included into the Hilbert kernel, thus avoiding the
buildup of ringing artifacts. In earlier investigations we found
that another way of removing these artifacts is to increase the
sampling of the backprojected image such that ∆r = 2∆t (see
again figure 1) [15]. In this case (Hf)(sθ1 + tθ⊥1 , θ

⊥
1 ) does

not contain any frequency component near ±νg = ± 1
2∆t and

the artifacts disappear1.

III. A 2D INVERSE HT FOR THE DBP-HT METHOD

As discussed in the introduction, in some cases a filtering
direction θ⊥1 which is neither aligned with the rows now
with the columns of the backprojected image is preferred.
We thus have evaluated the use of a new two-dimensional
inverse Hilbert transform formula. To perform the inverse HT
using this new formula, the one-dimensional convolution with

1Note that in the example in figure 1 we actually changed the sampling
of the sinogram instead of the backprojection grid to obtain images of equal
size, therefore causing a difference in resolution.
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Fig. 1: DBP-HT reconstructions of the Shepp-Logan phantom
[13] from sinogram data such that ∆r = ∆t (upper
row) and such that ∆r = 2∆t (lower row), each
without (left column) and with (right column) a half-
pixel shift applied during the inverse HT.

hhilb(t) is replaced by a two-dimensional filtering step using
the relation∫ ∞

−∞

(Hf)(sθ1 + tθ⊥1 , θ
⊥
1 )

π(τ − t)
dt

=

∫∫
R2

(F2Hf)(ν, θ⊥1 )(−i sign(ν · θ⊥1 ))ei2πx·ν dν, (11)

where (F2Hf)(ν, θ⊥1 ) denotes the two-dimensional Fourier
transform of (Hf)(x, θ⊥1 ). A proof of this equation is given
in the appendix.

IV. EVALUATIONS

The 2D filtering approach can be implemented as a
two-dimensional discrete convolution with a filtering kernel
ĥhilb,2(x) following similar steps to the ones in the 1D case
discussed above. A reconstruction result using such a direct
implementation of the 2D filtering with parameters ϑ1 = 45◦

and ∆x = ∆y = ∆r is displayed in figure 2a. As could
be expected from the 1D inverse HT results discussed in
section II-C, strong ringing artifacts appear in the recon-
structed image. These ringing artifacts can be eliminated when
incorporating a shift by half a pixel in both x and y directions
into the two-dimensional discrete convolution (see figure 2b).
It is, however, not possible to find a formulation of the discrete
convolution kernel that ensures that the continuation of the
kernel’s periodically repeated 2D Fourier spectrum is smooth
everywhere for arbitrary filtering directions θ⊥1 . Thus, there
will always exist some values of ϑ1 for which ringing artifacts
can not be suppressed by incorporating a shift into the discrete

convolution or a similar measure. This is exemplified by
the reconstruction result displayed in figure 2c, for which a
filtering direction corresponding to ϑ1 = 15◦ was chosen.

One way to work around this problem is to use a back-
projection grid with a higher pixel density such that ∆x =
∆y = 0.5∆r holds. As in the 1D case, this measure ef-
fectively removes the ringing artifacts from the reconstructed
image (see figures 3a and 3b). However, backprojection time
increases significantly, making this solution not very attractive.
One possible alternative to performing a backprojection on
a denser pixel grid that might come to mind is performing
the backprojection on the original grid and then interpolating
to the denser grid. However, while this approach can reduce
ringing artifacts compared to the direct non-shifted approach,
the resulting image quality is not as good as when performing
the backprojection directly onto the dense grid (see figure 3c
for an example using a spline interpolation).

Another way of suppressing ringing artifacts is to enforce
a smooth continuation of the periodically repeated 2D Fourier
kernel spectrum by applying a frequency apodization to the
kernel. In our implementation we achieve this apodization
by using a two-dimensional generalization of the Hamming
window (figure 4a). While this method works well in terms of
eliminating the ringing artifacts, the associated resolution loss
is quite high; the resulting resolution is comparable with the
resolution that one can obtain by backprojecting onto a rotated
grid, then performing a 1D inverse HT and finally interpolating
to the Cartesian coordinates (cf. figures 4b and 4c). However,
as discussed in the introduction, a backprojection onto a
rotated grid is not always practical, and one can still obtain an
increase in resolution by using the apodized 2D inverse HT
instead of having to perform the interpolation step two times.

V. DISCUSSION

In this paper, we have presented a new approach for
implementing the inverse Hilbert transform in the context of
the DBP-HT reconstruction method for CT. Our approach
involves replacing the one-dimensional discrete convolution
that is usually used to implement Söhngen’s formula for a
finite inverse Hilbert transform by a two-dimensional filtering
step. For certain cases, in which performing the differentiated
backprojection onto a rotating grid is impractical, using our
new method constitutes a significant implementation advan-
tage. However, as our evaluations have shown, the avoidance
of ringing artifacts is more difficult when using the two-
dimensional filtering approach than with the 1D discrete con-
volution, as there is no formulation of the discrete convolution
kernel that ensures that the continuation of the kernel’s peri-
odically repeated 2D Fourier spectrum is smooth everywhere
for arbitrary filtering directions θ⊥1 .

The most stable approaches to circumvent the problem of
ringing artifacts in our method are to either use a dense
backprojection grid such that ∆x = ∆y = 0.5∆r or to apply
a two-dimensional generalization of the Hamming window as
a frequency apodization. Both of those approaches might not
always be satisfactory solutions, as they either involve a higher
computational load for backprojection or a substantial reso-
lution loss. However, the resulting resolution when using the
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(a) ϑ1 = 45◦, no shift (b) ϑ1 = 45◦, half-pixel shift (c) ϑ1 = 15◦, half-pixel shift

Fig. 2: Reconstructions of the Shepp-Logan phantom using the 2D inverse Hilbert transform approach.

(a) ϑ1 = 45◦, double size backprojection grid (b) ϑ1 = 15◦, double size backprojection grid (c) ϑ1 = 15◦, spline stretching

Fig. 3: Reconstructions of the Shepp-Logan phantom using the 2D inverse Hilbert transform approach with decreased grid
spacing.

(a) ϑ1 = 15◦, Hamming apodization (b) ϑ1 = 15◦, BP onto a rotated grid (c) difference between (a) and (b)

Fig. 4: Reconstructions of the Shepp-Logan phantom using the 2D inverse HT with apodization and using a backprojection
onto a rotated grid with a 1D inverse HT.
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Hamming apodization is still comparable with the one that can
be obtained by performing the backprojection onto a rotated
grid and then interpolating to Cartesian coordinates after a 1D
inverse HT. Furthermore, in cases where a backprojection onto
a rotating grid is not practical, one can still obtain an increase
in resolution by applying the 2D inverse HT with Hamming
apodization instead of using an algorithm which involves two
interpolation steps.

APPENDIX

Proof of equation 11: Using a generic two-dimensional
function k(x), we have

(Hk)(sθ1 + τθ⊥1 , θ
⊥
1 )

=

∫ ∞
−∞

k(sθ1 + tθ⊥1 )

π(τ − t)
dt

=

∫ ∞
−∞

1

π(τ − t)

∫∫
R2

(F2k)(ν)ei2π(sν·θ1+tν·θ⊥1 ) dν dt

=

∫∫
R2

(F2k)(ν)ei2πsν·θ1

·
∫ ∞
−∞

1

π(τ − t)
ei2π(t−τ)ν·θ⊥1 ei2πτν·θ

⊥
1 dtdν,

which using x = sθ1 + τθ⊥1 finally results in

(Hk)(x, θ⊥1 )

=

∫∫
R2

(F2k)(ν)(−i sign(ν · θ⊥1 ))ei2πx·ν dν.
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Abstract—We have demonstrated that structures down to ~50 

nm can be visualized in x-ray projection images using a nano-
focus x-ray source.  This was achieved using a novel target 
structure to produce a very small but stable x-ray focal spot 
which can still emit sufficient x-rays.  Due to their unlimited 
depth of focus, nano-focus x-ray sources don’t pose a limit on the 
specimen size that can be imaged in 3D x-ray nanotomography. 
 

I. INTRODUCTION 
RAY optics such as Fresnel zone plates are often   used 

to obtain a spatial resolution better than a few 100 nm in 
x-ray projection images.  Despite the fact that they can achieve 
extreme high resolutions [1], Fresnel zone plates are not 
always suited for tomographic imaging due to their very 
limited depth of focus which restricts the size of specimen to 
be imaged to a few microns [2].  Alternatively, we looked into 
the possibility to use a set-up based on a nano-focus x-ray 
source as a way to prevail over this limitation while still 
retaining a nanometer scale resolution. 

Resolving extremely small details in an object requires both 
a good image resolution and a high signal-to-noise ratio.  The 
former depends on the size of the x-ray focal spot while the 
latter is given by the x-ray flux produced in the target of the x-
ray generator.  These two requirements are usually conflicting, 
i.e. to achieve the smallest possible diameter of the focal spot 
size, the electron beam current in the electron gun has to be 
reduced.  To maintain the same number of detected x-rays, the 
exposure time has to be increased. This makes the systems 
more prone to instabilities of the electron beam positioning. 

Also, when structures with dimensions below a few 
hundred nm are being imaged using x-rays of a few keV, 
Fresnel diffraction effects start to play a role.  These can cause 
image contrast to be destroyed and render structures much 
larger than the focal spot size invisible. 

To overcome these two limitations, both the target structure 
to generate the x-rays and the imaging configuration were 
optimized. 

II. EXPERIMENTAL SETUP 
Figure 1 shows a schematic drawing how a JEOL JSM-7000F 
scanning electron microscope (SEM) with a Schottky field 
emission electron gun was used for x-ray imaging.  A 
specimen holder is mounted on a rotation stage.  The distance 
from the specimen to the target can be varied.  The target is 
mounted at a 45 degree angle relative to the electron beam.  

The produced x-rays penetrating through the sample are 
acquired by a cooled CCD camera with direct photon 
detection (PIXIS-XO 512, Princeton Instruments, USA).  This 
camera has 512x512 pixels and a pixel size of 24 μm. The 
electron gun is operated at 30 kV.  The target can be coated 
with a thin substrate of a specific material to generate 
characteristic x-rays with appropriate energies. 
 

 
 

Fig. 1: Schematic drawing of the SEM attachment that converts a SEM into a 
X-ray tomography system.  The electron optics (1) focuses a narrow beam (2) 
onto a 45o target (3), producing a x-ray beam (4) passing though a specimen 
on a rotation stage at a variable distance from the target (5).  The x-rays are 
detected by a cooled CCD camera (6). 

 

III. DIFFRACTION LIMITED IMAGING 
To measure the resolution we placed an XRadia resolution 
pattern X50-30-2 (XRadia, USA) in the specimen holder.  The 
resolution pattern has 180 nm thick Au structures varying in 
size down to 50 nm.  The target consisted of a 200 nm silver 
substrate layer deposited on 50 μm beryllium.  Figure 2 shows 
an x-ray projection image of a part of the resolution pattern.  
The enlarged portion of the resolution pattern shows that the 
image contrast completely disappears at spatial frequencies 
corresponding to details of 300 nm.  At even higher spatial 
frequencies the image contrast is inversed. 

The loss and inversion of image contrast at high spatial 
frequencies seems to indicate that Fresnel diffraction effects 
become important when x-rays pass through the resolution 
pattern.  To verify this, the electromagnetic field strength in 
the detector plane was computed when an x-ray cone beam 
passes through a 1D grid pattern.  To compute the field 
strength U(x,y) we use the following equation [3]: 

 
 
 
where Obj(ξ,η) is the object transfer function (i.e. the 
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absorption and phase shift of the X-rays when passing through 
the object), z1 is the target to specimen distance and z2 is the 
specimen to detector distance.  The influence of the x-ray 
focal spot size and the 24 μm CCD pixel size is taken into 
account by convolving U(x,y) with a Gaussian x-ray spot 
distribution and a 24 μm wide block function. 
 

 
 

Fig. 2: X-ray projection image of an XRadia X50-30-2 resolution pattern.  The 
enlarged portion shows a complete loss of contrast around 300 nm. 

 
The energy spectrum emitted by the Ag thin film target, as 
seen by the detector, was computed using WinXray software 
package [4] and subsequently corrected for the energy 
depended detection efficiency curve (fig 4 top).  The obtained 
spectrum is rather mono-energetic around 3 keV. Figure 3 
shows the computed response to a regular 1D grid patterns 
with different periods.  The object transfer function assumes 
180 nm thick Au walls.  The red lines show the ideal response 
while the blue lines correspond to the expected detector 
response taking Fresnel diffraction, the X-ray spot size and 
detector pixel size into account.  The complete loss of image 
contrast around 290 nm corresponds with what we observed in 
the measured x-ray projection image. 
 

 
 
Fig. 3: Ideal (red) and predicted (blue) detector response to a regular 1D grid 
as a function of the structure width. 

IV. TARGET MATERIAL AND DEFOCUSING DISTANCE  
 From equation (1) one finds there are two instrumental 

ways to push diffraction limiting effects to higher spatial 
frequencies:  increase the mean x-ray energy and reduce the 
defocusing distance z=(z1*z2)/(z1+z2).   

The former can be achieved by choosing a different target 

material which produces characteristic x-rays at higher 
energies, e.g. replace Ag (Lα: 2.98 keV, Lβ : 3.15 keV) coating 
with Au (Lα: 9,71 keV, Lβ: 11.44 keV, Mα: 2.2 keV).  The Au 
spectrum as seen by the camera is less mono-energetic than 
the Ag spectrum because of the reduce detection efficiency at 
higher x-ray energies, i.e. ~15% at 10 keV compared to ~85% 
at 3 keV (fig 4 bottom).  Hence, the average energy of the 
detected x-rays is only 6.4 keV. 

 

 
Fig. 4: Simulated x-ray spectrum [5] as measured by the CCD when either an 
Ag (top) or an Au (bottom) target substrate is hit by 30 keV electrons. The Ag 
spectrum is rather mono-energetic around 3 keV while the Au exhibits two 
strong peaks at 2.2 keV and 9.7 keV.  The average energy of the Au spectrum 
is 6.4 keV. 

 
Since z1<<z2 in our set-up, it follows that z can be 

approximated by z1, i.e. the target to specimen distance. The 
defocusing distance was reduced by tilting the target from a 
45o angle to a 75o angle such that the distance to the resolution 
pattern can be lowered from 0.7 mm to about 0.3 mm.  To 
improve contrast at these higher energies the XRadia 
resolution pattern was replaced with an ATN/XRESO-50HC 
(NTT-AT Nanofabrication Co., Japan) resolution pattern.  The 
latter has 500 nm thick Ta structures.  Figure 5 shows a 
drawing of the central part of the NTTAT resolution pattern 
(left) and the resulting x-ray projection image.  The resolution 
in the horizontal direction is better than the vertical resolution 
due to the tilt of the target. Structures of 200 nm are now still 
clearly visible. The details in the resolution pattern get wiped 
out when the sizes are less than ~150 nm.  
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Fig. 5: Schematic drawing (left) and X-ray projection image (right) of the 
central portion of an ATN/XRESO-50HC (NTT-AT Nanofabrication Co.) 
resolution pattern.   

V. NOVEL TARGET STRUCTURE  
Using a thin target layer deposited on a flat substrate to 

produce x-rays prevents us from reaching very small (<100 
nm) x-ray focal spot sizes with a high x-ray flux.  This is due 
to the finite volume in the target material where x-rays are 
produced.  In addition, the long scan times also have a 
detrimental effect due to possible thermal instability during 
the exposure.  Therefore a novel target structure was invented. 
The planar target at 45o is replaced by a 250 µm 
Pt(90%)/Ir(10%) rod with a sharp tip of ~50 nm (fig. 6).  The 
axis of the rod is positioned perpendicular to the CCD surface.  
If an electron beam is positioned on the tip of the Pt/Ir rod, the 
CCD will see this as a ~50 nm x-ray spot.  Because the x-ray 
focal spot size is now determined by the physical dimensions 
of the target tip, the electron beam current can be increased 
and small movements of the electron beam during the 
exposure can be tolerated without any influence to the spatial 
resolution.  Using a rod tip as target also allows us to position 
the specimen closer to the x-ray focal spot, thereby reducing 
the defocusing distance. 

 

 
 

Fig. 6: SEM Image of the Pt/Ir target tip. 

VI. SUB-100 NM IMAGING 
The new target structure described above was mounted under 
the electron beam of our SEM.  The ATN/XRESO-50HC 
resolution pattern was placed at a distance of ~75 µm from the 
target tip. This distance was computed from the image 
magnification and the known target to detector distance.  To 
further improve the detection quantum efficiency, the back-

thinned CCD was replaced with a new fully depleted CCD 
(S10747-0909, Hamamatsu, Japan) which has a 250µm thick 
photosensitive structure.  This camera has 512x512 pixels (24 
µm pixel size) and an efficiency above 80% up to energies of 
10 keV.  The improved sensitivity at higher x-ray energies 
also results in a higher average energy of the detected x-rays 
and hence helps further reducing the Fresnel diffraction 
effects. 
Figure 7 shows an image of the resolution pattern (top) and a 
close-up view of the central part (bottom).  The ring with 100 
nm structures is now perfectly visible.  In some regions the 50 
nm structures in the inner ring are also visible.  The loss of 
resolution in certain radial directions is due to the fact that the 
home-made target tip is not perfectly cylindrical. 
 

 
 

 
 
Fig. 7: (Top) x-ray projection image of the ATN/XRESO-50HC resolution 

pattern, (Bottom) Close up of the central part of the same resolution pattern. 

VII. NANO-CT  IMPLEMENTATION 
A micro fossil was mounted on the rotation stage in the SEM 
for tomographic imaging.  Figure 8a shows a projection image 
of the micro fossil acquired with an image pixel size of 138 
nm. To obtain 3D tomographic images, projections were 
acquired at 0.9o intervals.  Due to limited mechanical 
accuracies of the rotation stage, sample movements have been 
observed. These movements can be approximated as 
horizontal and vertical shifts in the projection space and can 
be corrected accordingly.  These random shifts were estimated 

50 nm structures 

100 nm structures 
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by an iterative algorithm that fits measured projections to 
estimated projections from the reconstruction [4].  Once the 
magnitude of the X-Y shifts for each recorded projection is 
taken into account, an image can be reconstructed using the 
Feldkamp filtered back-projection algorithm. The axial and 
coronal slice through the 3D reconstructed space (figure 8b 
and 8c) clearly show internal channel structure. Figure 8d 
shows a 3D rendering of the micro fossil with the front-top 
corner virtually removed. 

 
 Fig. 8: A. (top-left): High resolution projection image showing a part of the 
micro fossil.  The inset shows a low resolution projection image of the 
complete micro fossil.  B. (top-right): Axial reconstructed slice, C. (bottom-
left): Coronal reconstructed slice, D. (bottom-right): 3D rendering of the 
micro fossil with a virtually removed front-top corner. 

VIII. CONCLUSION 
Imaging bulk samples at sub-100 nm resolution poses a 
number of challenges.  The usage of X-ray optics such as 
Fresnel zone plates limits the object to specimen with very 
small diameters (< few microns) in order to keep all projection 
images in focus.  This prevents non-destructive imaging of a 
larger specimen. 
To overcome this limitation we investigated the possibility of 
optimizing an imaging set-up based on a nano-focus x-ray 
source.  The most important points of this development are: 

1) Diffraction limited imaging can be overcome by 
choosing an appropriate target material which produces 
high energy characteristic x-rays and by reducing the 
distance between the x-ray focal spot and the specimen. 
This can be combined with the employment of a fully 
depleted CCD camera to optimize the sensitivity for the 
high energy x-rays and hence also further increase the 
average energy detected. 

 
2) Using a nano-tip target structure allows creating a very 
small x-ray focal spot and become insensitive to thermal 

instabilities of the electron beam during long exposures.  It 
also generates a larger x-ray flux compared to the 
conventional planar thin film target. 

 
3) Small random mechanical movements during 
tomographic imaging are compensated in the image 
reconstruction process by estimating the magnitude of the 
shifts using an iterative procedure. 

 
We have demonstrated that using this set-up 50 nm structures 
can be resolved in projection images.  The infinite depth-of-
focus allows any object to be completely in focus for all 
projections.  This is essential for 3D tomographic imaging.  
The nano-scale 3D tomographic imaging capabilities were 
demonstrated on a microfosil using an isotropic voxel size of 
138 nm. 
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A compact CT geometry: theory and practice
Samit Basu and Jed D. Pack

I. INTRODUCTION

There are several practical factors that motivate the
design and implementation of so-called compact CT ge-
ometries. The primary motivation is in space constrained
applications (e.g., mobile or retrofit installations) where a
conventional third-generation geometry simply requires
too much space to achieve a given working field of view.
Recall that in a third-generation geometry, the detector
arc is focused at the focal spot, and thus achieving a
given field of view requires that the outer diameter of the
gantry must be significantly larger than the field of view
itself. Traditional CT installations in medical or NDE
applications are typically not highly space constrained,
as other factors such as patient handling, the scan table,
or the assembly line in the case of NDE, often dictate
the space envelope required to site a CT system. In
security application, however, CT systems generally are
installed in one of two modes: as inline systems in new
installations, and as retrofit systems in existing airports.
In the former case, space is generally not at a premium,
and conventional geometry CT systems have proliferated
there. In the latter case, however, CT systems are being
installed where no prior system existed (e.g., in the lobby
of an airport, or in a checkpoint lane). In these cases,
space is at a significant premium, and a conventional
CT system based on a classic third-generation geometry
may be difficult to site. Additional installation options
(such as placing CT systems behind check-in counters)
may not even be possible with a conventional third-
generation system, as the required space simply does not
exist, and reworking the check-in counters to make the
space available may prove impractical or economically
feasible.

By contrast, fourth-generation CT systems, which
featured a complete ring of isocenter focused detector
modules and a rotating source, could (in principle) be
much more compact than their third-generation cousins.
The outer diameter of a fourth-generation system is dic-
tated only by the physical components themselves, and
not by the geometry of the imaging system. In principle,
a fourth-generation CT system can be made to be only
slightly larger than the imaging field of view, allowing
for the physical size of the X-ray source and the detec-
tors. While we do not know of any fourth-generation
CT systems still in production, many stationary-type
CT systems are essentially fourth-generation in design,

and feature an iso-center focused ring of detectors and
a generally iso-center focused ring of sources as well.
In addition to being compact, fourth-generation CT
systems, have other advantages including the fact that
ring artifacts do not generally occur in fourth-generation
systems as no single detector contributes to a ring
of pixels in the image). Unfortunately, these systems
struggled with scatter, detector area, and ultimately cost.

As a compromise, compact CT systems are typically
designed with detectors that are placed on some type of
modified arc which reduces the required outer diameter
of the system. In this paper, we outline such a compact
geometry CT system which provides a significantly
smaller external envelope than a corresponding con-
ventional third-generation system. Our implementation
features a highly uniform resolution across the field
of view, and excellent image quality. We discuss the
history of compact CT geometries, describe some of
the attributes of a compact design, and ultimately show
images from prototype systems that were built using a
compact geometry.

II. COMPACT CT AND PARALLEL BEAM

With the exclusion of fourth-generation and stationary
geometries (which are a topic in and of themselves),
compact CT geometries have been described in various
forms for the past 30 years. The earliest reference we
could find to a compact CT geometry is the patent from
Hounsfield [1]. In 1977, Hounsfield proposed a novel
CT geometry, not because of a desire to create a more
compact CT system, but rather as a means of optimizing
the sampling of the data for parallel beam rebinning of
the data. Recall that for a conventional third-generation
detector geometry, the data are typically sampled at equal
angles. When mapped to parallel beam samples using the
classic equation:

si = D sin(αi) (1)

a uniform sampling in αi leads to a decidedly non-
uniform sampling in si.

The usual solution to this problem is to reinterpolate
the set of si to a uniform set of samples using some in-
terpolation scheme. The observation made by Hounsfield
and rediscovered by ourselves was that by changing
the placement of the detectors, one can minimize the
deviation of the si from a uniform set. In mathematical
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terms we are searching for a set of αi that satisfy the
constraints

1) The samples are adjacent (i.e., no gaps between
the measured rays).

2) The set si are close to uniform.
3) The inner radius is fixed by the field of view.
4) The outer radius should be minimized (the com-

pactness requirement).

We are unaware if a closed form expression exists for
the optimal set of αi. Hounsfield did not explicitly
provide a set of αi other than in the form of a figure.
However he was motivated by the desire to minimize
the impact of interpolation from the non-uniform set
of si to a uniform set for parallel beam reconstruction.
As an aside, the same argument applies in 3D helical
scanning (or else this would be a purely intellectual
exercise) with algorithms that require some type of
pseudo-parallel beam or cone-parallel rebinning in
their processing. Of course item 2 requires a suitable
definition of “close to uniform”, and we used metrics
in our own design process to select the positions and
orientation of the detectors. The actual optimization is
also subject to mechanical constraints and constraints
on manufacturability, but those details are likely of
little interest to this audience. The system developed
by our team most closely resembles the one in [1].

Of interest is also the “folded” CT geometry used by
others and disclosed in [2]. This geometry is focused pri-
marily on the compactness problem, and less on the issue
of parallel beam resampling. Note that in this geometry,
the detector is at two different magnifications, and is
thus split into three pieces: a center piece labeled 131 in
the figure which is a conventional focally-aligned third-
generation type detector, and two peripheral detectors

132 and 133 which capture fan angles not measured
by the central detector 131. According to the patent
literature, the detectors at the periphery of the gantry
are chosen so as to present a uniform αi spacing to the
reconstruction algorithm. On the other hand, the outer
diameter of the gantry, which is driven by the outermost
set of detectors, is reduced in their geometry. Apart from
fourth-generation CT systems, the systems described
in [2] are the only other commercially available (and
deployed) CT systems that use a compact CT geometry.

Another proposed compact geometry was presented
in [3]. This geometry was effectively a half-fan ge-
ometry in which approximately half of the field of
view was illuminated by the source, and a complete
rotation provided data sufficient for reconstruction. It
bears significant similarities to the concept in [1], and
in one incarnation had two sources and two detectors
for full FOV coverage. We include it for completeness.

III. RESOLUTION UNIFORMITY

One of the interesting consequences of the compact
geometry is a potential increase in the uniformity of the
system resolution across the field of view. Unlike medi-
cal systems, which tend to be highly optimized towards
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imaging near isocenter, security applications typically
require high resolution uniformly throughout the field of
view. Threat objects are equally likely to appear at the
periphery of the field of view instead of the center, and
when system resolution is critical (as in the detection of
small or thin objects), a uniform resolution will result in
better system performance. During the design of our own
compact geometry system, we studied via simulation the
in-plane resolution as a function of radius, and found that
an optimized geometry lead to a slower degradation in
system resolution than a conventional third-generation
system with the same effective detector size and system
resolution. While the exact numbers cannot be disclosed,
the curves below are representative of the difference.

The difference in resolution between the conventional
and compact geometries is almost entirely a practical
issue. When rebinning to parallel beam, one must choose
a ∆s with which to resample the data. The conventional
choice is to choose ∆s so that the parallel beam rays
match the fan beam rays at isocenter. This choice leads
to the minimum resolution loss at isocenter (where we
typically care most about the resolution). But far from
isocenter, the parallel ray spacing and fan beam ray
spacing begin to drift apart, and the sampling becomes
suboptimal. On the other hand, if the fan angles are
chosen so that sin(αi) are approximately uniform, the
fan beam rays and the parallel beam rays remain aligned
throughout the field of view. This choice results in a
more uniform resolution.

IV. HELICAL PITCH

The second consequence of the compact geometry is
in terms of helical pitch. Without describing the exact
helical pitch used by any system, consider the problem
of the mapping of the Tam window (required for exact
helical cone beam reconstruction) onto a conventional
third-generation volumetric (i.e., many-slice) detector.
As can be seen in the following figure, the Tam
boundaries, which are the projection of the source
helix onto the detector, do not align with the physical
boundaries of the detector. Thus to avoid missing data

in the acquisition (and missing data artifacts in the
reconstructed images), one must limit the helical pitch so
that the Tam boundary is contained inside the detector.
This limitation results in a significant portion of the
detector being essentially “wasted”, as the measurements
from those detectors do not contribute materially
to the reconstruction of the object being imaged.

For the compact geometry case, the detectors at the
periphery of the field of view are closer to scan circle,
resulting in a lower magnification to the focal spot. As
a result, the Tam window projected onto the detector
has a significantly better fit. A better fit implies that
for the same physical detector area, a higher helical
pitch can be used, or conversely, for a given heli-
cal pitch, the required detector area can be reduced.

In the extreme case of a helical-only scanner, one can
also skew the detector along the translation direction.
The skew can be chosen to maximize the intersection
of the detector with the Tam window, and results in
the highest possible pitch for a given detector area. A
schematic of such a detector layout is presented below.

V. RESULTS

Image results from our prototype systems will be
presented at the conference.
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ABSTRACT 

To quantify the structures and functions of organs, tissues, 
cells, and sub-cellular components, we are developing a 
unique multi-scale x-ray CT facility that performs image 
reconstruction over six orders of magnitude in length scale 
and object size. To handle large samples and reduce 
radiation dose, we have combined interior tomography and 
compressive sensing to improve the CT imaging 
capabilities. This approach does not need exact prior 
knowledge for precise reconstruction of an interior region-
of-interest (ROI), and is demonstrated here to be valuable in 
an experimental CT study on a scaffold for bone 
regeneration. 

Index Terms— Computed tomography (CT), multi-scale 
CT, interior tomography, compressive sampling (CS), 
regenerative medicine. 21 
 

1. INTRODUCTION 
 

Among modern µm/nm-scale imaging tools such as visible-
light microscopy, electron microscopy, atomic force 
microscopy, and scanning tunneling microscopy, micro-
/nano-CT fills an important gap in terms of image 
resolution, sample preparation, and application territory.  
More importantly, this capability gap is precisely what is 
most critical for the nano-scale studies that will be urgently 
needed in the near future.  For example, MEMS and NEMS 
industries are producing components on the hundreds of nm 
scale, and behaviors of fuel cells are critically dependent on 
conditions of their nano-pores in the hundreds of nm mean 
size.  More relevant to biomedical applications, specimens 
in nano-medication need x-ray nano-CT characterization. 

                                                 
1
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       Coincidentally, our new multi-scale CT facility is 
highly complementary and synergic with a variety of micro-
/nano-scale imaging equipment integrated in the Nano-scale 
Characterization and Fabrication Lab at Virginia Tech. 
Hence, the noninvasive analytical capability brought by our 
facility will be indispensible for meeting comprehensive 
nano-imaging needs related research and education. 

        Recently, compressive sensing (CS) theory has 
emerged and proved that high-quality signals and images 
can be reconstructed from far fewer sampled data than what 
is usually considered necessary by the Nyquist sampling 
theory [1, 2]. The main idea of CS is that most signals are 
sparse in an orthonormal system when represented in a 
proper domain. Typically, CS-based algorithms recovers 
signal/images from a limited amount of data via the 1  norm 

minimization, which is also equivalent to the total variation 
(TV) minimization in several important cases [3].  

        Based on the CS theory, our group recently proved that 
if an object under reconstruction is piecewise constant or 
piecewise polynomial, a local region-of-interest (ROI) can 
be exactly reconstructed via the TV minimization in the CT 
field [4-6], which is complementary to our exact knowledge 
based interior tomography scheme [7-9]. Because many 
objects in CT/micro-CT/nano-CT applications can be 
approximately modeled as piecewise constant or piecewise 
polynomial, our approach is practically useful, and suggests 
a new research direction of x-ray CT.  

       The introduction of interior tomography overcomes the 
restriction that a subject/sample must stay within the field of 
view (FOV) of a CT system, relaxing the tight constraints 
on FOV and sample size [4-9], and leading to powerful, 
compatible and flexible multi-scale imaging with minimal 
distortion of the subject material.  

       In this paper, we will report our preliminary attempt to 
evaluate interior tomography for our multi-scale CT facility.  
In the next section, our facility and method are described. In 
the third section, experimental results are presented and 
analyzed. In the last section, related issues are discussed.
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Figure 1. SBES (School of Biomedical Engineering & Sciences) Advanced Multi-scale CT Facility, comprising Xradia Nano-CT 
system, Xradia Micro-CT system, and a Scanco micro-CT system. 

2. SYSTEM AND METHOD 
   

2.1. Multi-scale CT Facility 

Biology and medicine is a multi-scale science and demands 
systematic approaches. Quantifying the structures and 
functions of organs, tissues, cells, and sub-cellular 
components is challenging because the transition and fusion 
of information among different scales requires different 
systems and methods. Adopting x-ray CT as a common 
across-scale platform has the advantage of compatible 
staining and imaging techniques from mm to nm. Supported 
by an NIH SIG grant, in March 2009 we acquired an Xradia 
500nm micro-CT system. Supported by an NSF MRI grant, 
in December 2009 we acquired a state-of-the-art 50nm 
nano-CT system from the same company. Combining with 
our Scanco micro-CT scanner and medical CT scanners in 
our collaborative hospitals, we are developing an advanced 
multi-scale x-ray CT facility, as illustrated in Fig. 1. To our 
best knowledge, there is no other imaging modality that 
could perform image reconstruction over six orders of 
magnitude in length scale and object size like x-ray CT. 

     Since Scanco micro-CT and clinical CT scanners are 
rather conventional, here we focus on Xradia micro- 
especially nano-CT systems, which are also referred to as x-
ray microscopy. This nano-CT technology was first 
developed in the 1990s by two groups, one at Stony Brook 
University [10] and the other at Göttingen University[11]. 
Built on those development and other advances, Xradia 
made significant improvements and commercialized this 
technology since 2000. 

      X-ray nano-CT is a relatively new technique that offers 
unique capabilities stemming from its large penetration 

length in biological materials. The multi-keV x-rays used in 
the Xradia nanoXCT system has a 1/e attenuation length of 
> 0.25mm in soft tissues and over 100μm in hard tissues 
such as bone. As a consequence, thick tissue or bone 
sections can be studied with little sample preparation or 
modification. To date, up to 25μm spatial resolution has 
been demonstrated with sub-keV energy “soft” x-rays, and 
50nm resolution achieved with multi-keV “hard” x-rays. 
Currently, the state-of-the-art nanoXCT™ platform made by 
Xradia is the world’s only x-ray nano-CT system with tens 
of nm resolution that does not require a synchrotron 
radiation source. It resembles a conventional light 
microscope, consisting of an x-ray source, a condenser lens, 
an objective lens, and an area detector. The key features of 
the system include (1) penetration depths in the mm range 
for organic specimens of nano-medicine applications, (2) 
50nm resolution that is uniform in 3D, (3) multiple imaging 
modalities including absorption or Zernike phase contrast 
modes to optimize image contrast, and (4) automated 
acquisition, reconstruction, and analysis.  

      In the Zernike phase-contrast imaging mode [12], a 
phase ring is inserted in the back focal plane of the objective 
lens in the nanoXCT™ system, which causes the affected 
radiation to interfere with the un-affected radiation on the 
image plane to produce an intensity pattern. This pattern can 
be expressed in terms of linear integrals. That is, for a phase 
object the recorded image intensity is proportional to the 
integrated phase shift through the object plus a constant 
offset. Then, we can extract the linear integral information 
from the measured intensity data via appropriate data 
preprocessing. Hence, both the absorption and Zernike 
phase contrast imaging can be achieved by inverting linear 
integral equations. 
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2.2. CS-based Interior Tomography 

Based on the CS theory, our group recently found that a 
local ROI can be exactly reconstructed via the total 
variation minimization if an object under reconstruction is 
essentially piecewise constant [4, 5] or piecewise 
polynomial [6].  The gradient transform of ( , )f   is 
expressed as 

2 2
( , ) ( , )

( , )
f f     
  

    
        

 (1) 

which is the gradient magnitude of the maximum directional 
derivative at ( , )  . Typically, the integration of 

( , )   over the domain of interest is referred to as the total 
variation. We have the following theorem [4]. 

Theorem 1: In the compressive sensing framework, an 
interior ROI of a general compactly supported function f  
can be exactly determined by minimizing the total variation 
defined if f can be decomposed into finitely many constant 
sub-regions.  
      To perform the interior reconstruction from data 
collected on the aforementioned multi-scale CT facility, we 
implemented an alternating iterative algorithm in the CS 
framework [4]. Basically, this algorithm is similar to our 
previous version [4] with some minor modifications. 
Different from our previous interior tomography algorithms 
in terms of both projection onto convex sets (POCS) [8] and 
singular value decomposition (SVD) [9, 13] based on exact 
knowledge on a sub-region in the ROI, our CS based 
interior tomography approach only assumes a flexible 
imaging model, and is more practical and more powerful. 
  

3. EXPERIMENT 
  

3.1. Data Acquisition  

Our general imaging protocol is as follows. First, an 
object/sample is scanned by a lower-resolution scanner to 
generate scout views or CT images and identify an ROI or 
volume-of-interest (VOI) in these views or images. Then, 
only the ROI/VOI is locally scanned by a higher-resolution 
scanner, and reconstructed by interior tomography. The 
procedure will be repeated until it is successful. 

      In this experiment, our subject is a scaffold for bone 
regeneration. It was fabricated using a new electro-spinning 
setup [14]. Briefly, poly (L-lactide) (PLLA) and poly (D-
lactide) (PDLA) polymer solutions were electro-spun onto 
rotating poly (glycolide) (PGA) microfibers. The thickness 
of the nano-fiber layers around a PGA microfiber scaffold 
was varied by controlling the volume of the electro-spun 
solution. The osteon-like sections were then stacked 
together and wrapped with a sheet of the PLLA/PDLA 
electro-spun mat and placed into a 10mm cylindrical mold 

with 5mm diameter. These were then sintered to create the 
3D scaffold.  

     Then, the scaffold was first scanned by the 500nm 
micro-CT scanner. It was placed in a 0.5ml PCR tube 
secured to a sample holder on the rotary stage of the system. 
The x-ray source voltage and current were set at 30kV and 
100µA respectively. During the scan, 271 projections of 
20482 pixels per projection were acquired between -135º 
and +135º. Acquisition time was ~5 hours for the specimen. 
Fig. 2 shows an SEM cross-section of the scaffold and an 
image slice reconstructed on the Xradia micro-CT scanner. 
Our next step is to scan this scaffold using the state-of-the-
art 50nm nano-CT system to depict inner structures with 
finer resolution. Note that the nano-CT system will be 
available in November, 2009, and used immediately after its 
acceptance test at Virginia Tech. 

  (a)   (b) 

Figure 2. Osteon-like scaffold. (a) An SEM cross section of a 
microfiber scaffold, and (b) a reconstructed slice of the 
scaffold.  

3.2. Reconstructed Images 

Using our in-house interior tomography software, we 
repeated the reconstruction from the aforementioned dataset 
acquired by our Xradia micro-CT scanner. A typical 
reconstructed image slice is given in Fig. 3 (a). Because our 
50nm CT system is not available at this moment, we 
truncated the micro-CT dataset to simulate a corresponding 
local nano-CT dataset of the ROI indicated in Fig. 3(a). In 
comparison of the magnified ROI Fig. 3 (b) from the global 
reconstruction Fig. 3 (a), the resultant CS-based interior 
reconstruction is presented in Fig. 3(c). It can be clearly 
observed that our interior reconstruction offers an image 
quality comparable to that of global reconstruction. Because 
the CS-based iterative reconstruction is capable of noise 
suppression, our CS-based interior reconstruction has a 
higher signal-noise-ratio (SNR) than that of the 
conventional reconstruction. 

     While a higher resolution CT scanner can always 
produce a better spatial resolution by irradiating the ROI 
and recording data on a finer detector array, the scanning 
time is typically increased to keep the same SNR.  Because 
the CS theory is based on so-call sparsifying transform, the 
scan time can be reduced by specifying a less number of 
projections. However, in general, the smaller the projection 
number, the worse the reconstruction quality. To study how 
to maintain the image quality with a limited number of 
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projections in the CS framework, the first 180 projections 
were extracted from the above-mentioned dataset covering a 
range of 180°. Then, 90 and 60 projections were 
sequentially selected by discarding 1/2 and 2/3 projections 
respectively. For these reduced projection datasets, scan 
time can be accordingly shortened by 34%, 67% and 78% 
respectively.  The results are shown in Fig. 3 (d)-(f). It can 
be seen that the image quality was still sufficiently good 
even if we only used 90 projections. 

 (a)   (b) 

 (c)  (d) 

 (e)  (f) 

Figure 3. CS-based interior reconstructions for the slice of the 
microfiber scaffold shown in Fig. 2 (b). (a) The reconstruction 
from a global projection dataset of 270 views, (b) a 
magnification of the ROI indicated in (a) to serve as a 
benchmark, (c)-(f) CS-based interior reconstructions from 
truncated local datasets of 270, 180, 90 and 60 views 
respectively.  

 

4. DISCUSSION AND CONCLUSION 
   

Evaluating our results against that reconstructed using the 
Xradia commercial software, it is noticed that our image 
quality is slightly lower than the standard. This is most 
likely because of our in-house software in a preliminary 
development stage. First, it did not perform any correction 
to raw projections, such as scatter reduction, beam 
hardening correction, etc. Second, our codes and control 
parameters for the iterative procedure have not been 
optimized yet. Thus, we are still working to address these 
issues. Nevertheless, our proposed interior tomography and 
projection dataset reduction techniques have been 

successfully demonstrated in the experiment, which seem 
promising for real-world micro-/nano-CT applications. 

      In conclusion, we have developed our CS-based interior 
reconstruction technology and applied it for the advanced 
multi-scale CT facility. Our preliminary results have 
demonstrated the feasibility and merits of our methodology. 
After the nanoXCT™ system is installed in November, 
2009, we will have real projection datasets of the 3D 
scaffold in 50nm resolution. Then, a comprehensive 
analysis will be performed to couple micro- and nano-CT 
results and derive critical information for bone regeneration 
research.  
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CT scanners are deployed world-wide to detect explosives in checked and carry-on baggage. 
Though very similar to single- and dual-energy multi-slice CT scanners used today in medical 
imaging, some recently developed explosives detection scanners employ multiple sources and 
detector arrays to eliminate mechanical rotation of a gantry, photon counting detectors for 
spectral imaging, and limited number of views to reduce cost. For each bag scan, the resulting 
reconstructed images are first processed by threat detection algorithms to screen for explosives 
and other threats. Human operators review the images only when these automated algorithms 
report the presence of possible threats. The US Department of Homeland Security (DHS) has 
requirements for future scanners that include dealing with a larger number of threats, higher 
probability of detection, lower false alarm rates and lower operating costs.  One tactic that DHS 
is pursuing to achieve these requirements is to augment the capabilities of the established 
security vendors with third-party algorithm developers.  A third-party in this context refers to 
academics, national laboratories, and companies other than the established vendors.  DHS is 
particularly interested in exploring the model that has been used very successfully by the 
medical imaging industry, in which university researchers develop algorithms that are eventually 
deployed in commercial medical imaging equipment.  The purposes of this presentation are to 
review the presently deployed scanners and their concept of operations, and to discuss 
opportunities for third-parties to develop advanced reconstruction and threat detection 
algorithms. 
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Iterative reconstruction in micro-CT.
Michel Defrise1, Christian Vanhove1, Xuan Liu2

ABSTRACT

The paper analyses the performance of the algorithm of
O’Sullivan and Benac for the maximum likelihood reconstruc-
tion from cone-beam micro-CT data, with the goal of reducing
radiation dose in longitudinal studies of rats and mice. The
algorithm is implemented both without regularization and with
a regularizer based on a total variation penalty. Results with
simulated 2D fan-beam data and with measured cone-beam
data confirm the attractive properties of the TV penalty that
have been illustrated by other authors, including a significant
noise reduction and a good robustness to imperfectly corrected
data defects, to reduced number of projections and to cone-
beam artefacts caused by the incompleteness of the circular
orbit. However, iterative reconstruction may introduce arte-
facts not observed in the FDK reconstructions.

I. INTRODUCTION

A major problem in micro-CT imaging of small animals is
the potential impact of the radiation dose on the biological
parameters that are estimated from the micro-CT data or from
a correlated PET or SPECT study [1]. This problem is acute
in longitudinal studies where an animal undergoes repeated
scans. The problem is also related to the high spatial resolution
if we remember that the dose should increase by a factor 16
when the isotropic resolution is improved by a factor 2 -at
least with a linear reconstruction algorithm and if maintaining
a constant voxel variance [2].

The potential benefits of iterative reconstruction belong to
three categories: better physical model of the system, better
modeling of the data noise, and possibility to incorporate
prior knowledge on the object. In emission tomography these
benefits have been extensively validated in the last twenty
years and iterative algorithms are now exploited in almost
all applications. In CT the validation of iterative algorithms
is more recent and fragmentary but has already produced
encouraging results [3]. The goal of this work is to determine
whether penalized maximum likelihood reconstruction has a
positive impact on the micro-CT studies of rats and mice
performed in our laboratory. The central question is whether
the relevant imaging tasks can still be fulfilled from iterative
reconstructions of data acquired with a reduced number of
projections, hence with a lower dose and reduced scan time.
This preliminary paper describes the algorithm implemented
and evaluates its performances on phantom data.

Fully exploiting the potential benefits of iterative recon-
struction is more difficult in CB-CT than in PET and SPECT.
Due to the large data size, it is impossible to pre-calculate

1Dept. of Nuclear Medicine, Vrije Universiteit Brussel, Brussels, Bel-
gium. e-mail: mdefrise@vub.ac.be, 2 Skyscan, Kontich, Belgium, e-mail:
Xuan.Liu@skyscan.be

the system matrix so that simplified geometric models must
be used. In this work we combine a voxel-driven backpro-
jector with an unmatched ray driven projector with linear
interpolation [4]. These two operators are fairly accurate
discretizations of the corresponding continuous operators, and
this unmatched combination is known [5] to minimize the
artefacts observed when the projector and backprojector are
discretized using the same ray driven method [6]. The price
to pay is that convergence of the iterative algorithm is not
guaranteed and a better solution might be a matched distance-
driven discretization [7].

The number of detected x-rays is large even in low-dose
CT studies, but the dynamic range of the attenuation I0/I
can be large, resulting in a non-uniform data variance that
should be taken into account during reconstruction. This
can be done by assuming a gaussian distribution for the
linearized data log(I0/I), with the advantage that the resulting
optimization problem is quadratic (if the regularizing penalty
is quadratic). Accurately estimating the variance is difficult
however if the data are noisy. This work takes an alternative
approach: we adopt a Poisson model for the measured inten-
sities I and, among other candidates [8]–[10], we implement
the monochromatic maximum-likelihood (ML) algorithm of
O’Sullivan and Benac [12] (see section 2), which is similar to
the ML-TR algorithm [13] but with a proof of convergence.
This Poisson model is an approximation because we apply
it to data pre-corrected for a number of physical effects, as
described in section 3. Though computation time is not our
main concern at this point, we use two classical empirical
tricks to accelerate the algorithm: the first is the ordered-
subset processing of the data, the second one consists in
using a FBP reconstruction as the initial image estimate for
iterative reconstruction [14]. The second trick may introduce
high frequency streaks, which disappear slowly -if ever- when
iterating. We found however that this drawback is largely
alleviated when a TV penalty is used and when the initial
FBP reconstruction is obtained from interpolated data with a
fine azimuthal sampling.

Recent works have generated interest for prior image models
based on sparsity in some basis or frame [11]. Impressive
reconstructions from a small number of azimuthal samples
have been obtained with a TV penalty, which corresponds to
assuming sparsity of the object gradient [21]. Most illustrations
concern relatively simple objects such as Shepp’s phantom for
which as little as 16 azimuthal samples produce, with noise-
free data, accurate results. As shown in [19] however, more
complex objects require a larger number of projections. The
efficacy of the TV penalty for non piece-wise constant, but
somehow piece-wise homogeneous - objects remains an open
question.

In this work we regularize the ML algorithm of O’Sullivan
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and Benac with a TV penalty, and illustrate the results ob-
tained when reducing the number of projections by a factor
3 compared to the standard acquisition protocol and FDK
reconstruction [15].

II. MAXIMUM-LIKELIHOOD ALGORITHM OF O’SULLIVAN
AND BENAC.

We use the following notations.

• yj , j = 1, . . . , D: detected number of photons in line of
response (LOR) j. There are D data bins (LORs),

• Ij , j = 1, . . . , D: number of incident photons in LOR j.
This is the ”air” scan.

• xi, i = 1, . . . , N : linear attenuation coefficient in voxel i.
There are N voxels.

• sj,i: system matrix.

The average number of counts in LOR j is

< yj >= Ij e
−

PN
i=1 sj,ixi j = 1, · · · , D (1)

and the log-likelihood of a data set {yj , j = 1, . . . , D} is

Φ(x) =
D∑

j=1

yj log(< yj >)− < yj > − log yj ! (2)

Given the data set {yj} and the blank scan {Ij}, a ML
estimator is an image x that maximizes Φ(x). The algorithm
of O’Sullivan and Benac [12] converges to a ML estimator:

1) Pre-calculate the backprojection of the raw data, bi =∑D
j=1 sj,iyj . This needs to be done only once,

2) Determine factors Zi satisfying the inequalities

N∑
i=1

sj,i

Zi
≤ 1 j = 1, . . . , D, (3)

as closely as possible. We use a constant

Zi = Z = max
1≤j≤D

N∑
l=1

sj,l i = 1, . . . , N (4)

equal to the maximum of the forward projection of a
unit image.

3) Start with an initial image estimate x0.
4) For each iteration n = 0, 1, 2, . . .

a) Forward project the previous image estimate
xn and calculate the number of counts yn

j =
Ij e

−
PN

l=1 sj,lx
n
l that would be expected if xn was

the true image,
b) Backproject these estimated counts bni =∑D

j=1 sj,iy
n
j

c) Calculate the next estimate as:

xn+1
i =

[
xn

i −
1
Zi

log(
bi
bni

)
]
+

i = 1, . . . , N

(5)
where [u]+ = u if u ≥ 0 and [u]+ = 0 if u < 0.

The definition of an ordered-subset version is straightforward.

III. TOTAL-VARIATION REGULARIZATION

We use one of the usual forms of the TV penalty [16], [17]

TV (x) =
√
||∇x||2 + ε2 (6)

with a two point discretization of each component of the
gradient, and a small ε to obtain a differentiable functional.
The regularized image estimate (ML-TV) is then defined as
a maximizer of Ψ(x) = Φ(x) − β̃ TV (x). Maximization
is achieved using the one-step-late [18] modification of the
algorithm of O’Sullivan and Benac, where equation (5) is
replaced by

xn+1
i =

[
xn

i −
1
Zi

log

(
bi + β̃ (∂TV (x)

∂xi
)x=xn

bni

)]
+

(7)

To normalize the regularization parameter we note that the
gradient of TV (x) is invariant (if ε = 0) for a global scaling
of x and we take β̃ = β×maxi=1,...,N (bi). This normalization
ensures that the algorithm is invariant for a global scaling
Ij → α× Ij of the incident intensities, hence a conversion of
the measured intensities into number of quanta is not needed.
Appropriate values of β are very small and for these small
values we did not observe convergence problems with the OSL
algorithm (7).

IV. 2D SIMULATIONS

We simulated 2D parallel-beam CT data of one slice of
a thorax phantom, with a maximum attenuation of 0.177
typical for a small animal study, with 600 projections and
600 radial samples, and with Poisson noise corresponding to
2 105 incident photons per ray. We use β = 0.00025 and 50
subsets.

The simulations confirm the noise reduction properties of
the TV regularization described in previous works (see e.g.
[3], [17], [19]). See figure 1. Additional observations are:
• Variance images obtained from 50 realizations of the

noisy data confirm the result of Kohler et al [20] that the
variance reduction achieved by edge-preserving penal-
ties within homogeneous regions is accompanied by an
increase of the variance around boundaries, when com-
pared to FBP. One must therefore interpret with care the
apparently precise localization of the sharp boundaries
recovered by ML-TV reconstructions (results not shown).

• Despite the simplicity of this phantom, at least 100 to
200 projections are required to avoid distorsions, e.g. of
the ribs. This might allow a reduction of the number of
projections by a factor of 3 or more, but is far from the
reduction allowed for a simple object such as Shepp’s
phantom for which accurate reconstructions are obtained
from as little as 16 projections. Similar conclusions are
found in [19].

• Figure 2 shows reconstructions from 100 projections.
Initializing the iteration with the FBP reconstruction [14]
from 600 projections obtained using cubic spline interpo-
lation, and then performing ML-TV iterations using only
the 100 original projections (and 20 subsets), significantly
accelerate the convergence, though a detailed study of
potential bias remains to be done.
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(a) phantom

(b) FBP

(c) ML-TV, β = 0.00025, 10 subsets, 250 iterations

Fig. 1. 2D reconstructions from 600 noisy simulated projections.Grey scale
0.04, 0.06 (true value is 0.096 in the spine and 0.070 in the ribs).

V. MICRO-CT DATA

The Micro Deluxe Phantom (Data Spectrum, Hillsborough,
North-Carolina, USA) contains six sectors with rod diameters
of 4.8 mm, 4.0 mm, 3.2 mm, 2.4 mm, 1.6 mm, and 1.2
mm. The rods are 34 mm in height and placed in a cylinder
with 45 mm internal diameter. Micro-CT acquisitions were
performed using a SkyScan 1178 (Kontich, Belgium) high-
throughput in vivo system. X-ray projections were acquired
into a 512x640 matrix at 50 kV and 615 µA, with a 0.5 mm
Al filter. Projections (n=666 and n=221) were acquired by
means of two x-ray detector-source pairs. The CT exposure
time was set to 160 ms per projection. The data were corrected
for geometric distorsions and flat field, a median filter is
then applied to correct for individual defective pixels. The
data were reconstructed into a 512 × 512 × 640 matrix with
0.166 mm voxel size. The un-regularized (β = 0, ML)
and regularized (β = 0.0005, ML-TV) reconstructions from
221 projections were done with 17 subsets and 18 iterations
(un-optimized values). Figures 3 and 4 also show the FDK
reconstructions from 221 and from 666 projections, where the
latter corresponds to an approximately three-fold larger dose.

Several observations can be drawn from these results. As
expected the TV penalty significantly suppresses noise for
this piece-wise constant object. The iterative reconstructions
remove a streak artefact that is observed in the FDK-221

(a) Initial image: 0

(b) Initial image: FBP from 100 views

(c) Initial image: FBP from 600 interpolated views

(d) Initial image: 0, 250 iterations

Fig. 2. Grey scale 0.04, 0.06. ML-TV reconstructions from 100 noisy
projections, β = 0.00025, 10 subsets, 25 (first three rows) or 250 iterations.

transaxial slice (figure 3, top right) and is tentatively attributed
to an imperfect projection pixel. It also suppresses an axial
artefactual line in the FDK images. The TV penalty, however,
does not blur out some very fine physical details of the
phantom, such as the thin glue layer that links the two halves
of the phantom. This layer is visible as a faint vertical line
at the center of the coronal sections in figure 4: with 221
projections that layer is visible only in the iterative recon-
structions. As observed previously, e.g. in cone-beam SPECT
[6], maximum-likelihood reconstruction slightly improves the
cone-beam artefacts caused by the non-completeness of the
circular CB-CT data (see the external edges of the phantom).
However, the iterative reconstructions show dark bands (verti-
cal in figure 4 and best visible on the ML-TV reconstructions),
the origin of which is still under investigation. Hypothesis
include incomplete convergence or a specific reaction of the
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ML estimation to data inconsistencies (beam hardening). The
hypothesis that data inconsistencies are propagated differently
is also supported by the artefactual spreading of the increased
density of the o-ring (figure 4, centre right) within the plastic
screw: this artefact, probably due to beam hardening, disap-
pears in the two iterative reconstructions. Finally, although
the ML-TV images have excellent spatial resolution (see e.g.
the indentation of the various screws), the somewhat irregular
edges of the bars (seen in the coronal slices) in the ML-TV
image suggests as in the previous section that the variance is
enhanced near edges [20].

We will present a detailed and quantitative analysis of these
phantom studies, and show reconstructions from small animal
CT data with the SkyScan 1178.

(a) FDK 666 projections (b) FDK 221 projections

(c) ML 221 projections (d) ML-TV 221 projections

Fig. 3. Central transaxial slice reconstructed from 666 projections with
FDK, and from 221 projections with FDK, ML, ML-TV. The data with
666 projections are from an independent scan, hence the slightly different
orientation of the slice.
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(a) FDK, 666 projections

(b) FDK, 221 projections

(c) ML 221 projections

(d) ML-TV 221 projections

Fig. 4. Coronal slice reconstructed from 666 projections with FDK, and from
221 projections with FDK , ML, ML-TV. The scanner axis is horizontal. The
data with 666 projections are from an independent scan. The o-ring appears
as the two brighter disks on both sides of the screw at the right edge of the
central bar.
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ABSTRACT 
 
In the medical imaging filed, the discrete gradient transform 
(DGT) is widely used as a sparsifying operator to define the 
total variation (TV). Recently, the TV minimization 
becomes a hot topic in image reconstruction, and usually 
implemented using the steepest descent method (SDM).  
Since the TV minimization with the SDM takes long 
computational time, here we construct a pseudo-inverse of 
the DGT and adapt a soft-threshold filtering algorithm, 
whose convergence and efficiency have been theoretically 
proved.  Also, we construct a pseudo-inverse of the discrete 
difference transform (DDT) and design an algorithm for L1 
minimization of the total difference (TD).  These two 
methods are evaluated in numerical simulation. The results 
demonstrate the merits of the proposed techniques. 
 

Index Terms— Compressive sampling (CS), soft-
threshold filtering, discrete gradient transform (DGT), total 
variation (TV), total difference (TD) 
 

1. INTRODUCTION 
 
Because the x-ray attenuation coefficient often varies mildly 
within an anatomical component, and large changes are 
usually confined around borders of tissue structures, the 
discrete gradient transform (DGT) has been widely utilized 
as a sparsifying operator in compressive sampling (CS) 
inspired CT reconstruction [1-4], which is also referred to as 
the total variation (TV) minimization [5]. This kind of 
algorithms can be divided into two major steps.  In the first 
step, an iteration formula (e.g., SART) is used to update a 
reconstructed image for data discrepancy reduction.  In the 
second step, a search method (e.g., the standard steepest 
descent technique) is used in an iterative framework for TV 
minimization. These two steps need to be iteratively 
performed in an alternating manner. However, there are no 
standard stopping and parameter selection criteria for the 
second step.  Usually, these practical issues are addressed in 
an ad hoc fashion. On the other hand, soft-threshold 
nonlinear filtering [6-8] was proved to be a convergent and 

efficient algorithm for the L1- norm minimization 
regularized by a sparsity constraint.  Unfortunately, because 
the discrete gradient transform is not invertible, it does not 
satisfy the restricted isometry property (RIP) required by the 
CS theory [9-10] and soft-threshold algorithm [7-8]. In 
other words, the soft-threshold algorithm cannot be directly 
applied for TV minimization.  Motivated by this challenge, 
here we construct two pseudo-inverse transforms and apply 
the soft-threshold filtering for image reconstruction from a 
limited number of projections.   
           

2. SOFT-THRESHOLD FILTERING PRINCIPLE 
 
Let  1 2, ,..., T N

Nf f f f   be an object function and 

 1 2, ,..., T M
Mg g g g   be a dataset. They are linked by 

         g = Af + e ,                                                        (2.1) 
where ,( ) M N

m na  A    is the linear measurement 

matrix satisfying 1T A A , and  Me   the measurement 
noise. When the system (2.1) is ill-posed, additional 
constraints are required to regularize the solution.  
Particularly, given a basis or frame  ( ) φ  of the space 

N  satisfying ,  


 f f φ φ , and a sequence of strictly 

positive weights ( )w w , we define the functional 

, ( )pw f by  

       2
, ( ) 2 ,

p

p w 


   w f g Af f φ ,                (2.2) 

where ,   represents the inner product and 1 2p  .  The 
solution of Eq. (2.2) is the minimizer of , ( )pw f  that can be 
recursively determined by the soft-threshold algorithm [7-
8]: 
         1 1

, ( ( ))k k T k
p

   wf f A g Af ,                        (2.3) 

where  1, 2,....k   is the iteration number, 0f  the initial 
guess in  N , and  
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     , ,( ) ,p w pS
  



 w f f φ φ                                  (2.4) 

with  

     ,1( ) 0w

x w if x w
S x if x w

x w if x w

 
 
   

.                                 (2.5) 

Eq.(2.5) is called soft-threshold filtering [7]. Daubechies et 
al. proved the convergence of Eq. (2.3) [7-8].    

 
3. ALGORITHM DEVELOPMENT 

 
3.1. Imaging Model 

         
Figure 1. Projection model of a discrete image in fan-
beam geometry. 

 
In the context of CT reconstruction, a two-dimensional 
digital image can be expressed as ,( ) I J

i jf  f   , 
where the index  1 i I   and 1 j J   are integers. 
Define 
          ,n i jf f , ( 1)n i J j    ,                             (3.1) 
with 1 n N   and N I J  , we can re-arrange the image 
into a vector for the measurement model Eq. (2.1) . In this 
paper, we will use both the signs ,i jf  and  nf   for 
convenience.  Each component of the function g  in Eq. 
(2.1) is a measured datum with M  being the product of the 
number of projections and the number of detector elements. 
In a typical fan-beam geometry, the thn  pixel can be viewed 
as a rectangular region with a constant value nf , the 

thm measured datum mg  as an integral of areas of pixels 
partially covered by a narrow beam from an x-ray source to 
a detector element and weighted by the corresponding x-ray 
linear attenuation coefficients respectively. Thus, the 
component ,m na  in Eq. (2.1) denotes the interaction area 

between the thn  pixel and the thm  fan-beam path (Fig. 1). 
While the whole matrix A  represents the forward 
projection, TA implements the back projection. The SART-
type solution to Eq. (2.1) can be written as [11]: 
                                   

 ,1 1

1

1 M
m nk k k k

n n m m
mn m

a
f f g

a a
 

 

   A f ,                 (3.2) 

where  ,
1

0
M

n m n
m

a a


  , ,
1

0
N

m m n
n

a a


  , mA  is the thm  

row of A , k  the iteration index, and 0 2k   a free 
relaxation parameter. The solution Eq. (3.2) exactly 
corresponds to “ 1 1( )k T k  f A g Af ” in Eq. (2.3) with na  
and ma   being weights for normalization, and can be used 
in the same place for a better converging behavior. To apply 
the soft-threshold algorithm subject to a sparsity constraint, 
we must find a suitable basis or frame φ  and , ( )pw f , 
which is the major contribution of this paper. 
 
3.2. Pseudo-Inverse of the Discrete Gradient Transform  
In the medical imaging field, the DGT has been widely used 
to define a sparsity constraint. Let us assume that a digital 
image satisfies the so-called Neumann conditions on the 
boundary:  
  0, 1,j jf f  and , 1,I j I jf f   for 1 j J  , 
   ,0 ,1i if f   and , , 1i J i Jf f   for 1 i I  .               (3.3) 
Then, the standard isotropic discretization of  TV can be 
expressed as  

 ,
1 1

( )
I J

i j
i j

TV d
 

 f , 2 2
, , 1, , , 1( ) ( ) .i j i j i j i j i jd f f f f          (3.4) 

Thus, Eq. (2.2) for CT becomes 
    2

,1( ) 2 ( )w wTV   f g Af f .                           (3.5) 
Note that there does not exist a frame such that  

, ,,i j i jd  f φ , the solution Eq. (2.3) cannot be directly 

applied to minimize ,1( )w f  defined by Eq. (3.5).  
However, we can construct a pseudo-inverse of the discrete 
gradient transform as follows. Rewriting the result from Eq. 
(3.2) as k

nf , we can compute  

     2 2
, , 1, , , 1( ) ( )k k k k k

i j i j i j i j i jd f f f f        .                   (3.6) 
According to the soft-threshold operation in Eq. (2.5), when  

,
k
i jd w  we can adjust the values of  ,

k
i jf , 1,

k
i jf 
  and , 1

k
i jf 
  

to make , 0k
i jd  , and when ,

k
i jd w  we can reduce the 

values of 2
, 1,( )k k

i j i jf f    and 2
, , 1( )k k

i j i jf f    to perform the 
filtering. That is, we can construct the following pseudo-
inverse: 

     , , ,
, , , ,

1 2
4

k k a k b k c
i j i j i j i jf f f f   ,                                 (3.7) 

    

, 1, , 1
,

,
,

, 1, , 1
, ,

,

2
, if 

4
2

, if 
4

k k k
i j i j i j k

i j
k a

i j k k k
i j i j i jk k

i j i jk
i j

f f f
d w

f
w f f f

f d w
d

 

 

  


     


  

  


, (3.8) 
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         In summary, we have a soft-threshold algorithm for 
TV minimization in the following pseudo-code: 
   S1: Initialize the parameters k , w ; 
   S2: Update the current reconstruction using Eq. (3.2); 
   S3: Perform the non-linear filter using Eq. (3.7); 
   S4: Go to S2 until the stopping criterion is met. 
 
3.3. Pseudo-Inverse of the Discrete Difference 
Transform  
In addition to the discrete gradient transform, there are other 
possible sparse transforms. For example, we can define a 
total difference (TD) of f  as 

    , , , 1, , , 1
1 1

( ) ,
I J

i j i j i j i j i j i j
i j

TD d d f f f f 
 

    f ,  (3.11) 

and rewrite Eq. (2.2) as  
    2

,1( ) 2 ( )w wTD   f g Af f .                              (3.12) 
We call ,i jd  in Eq. (3.11) a discrete difference transform. 
Similar to what we have done in Subsection 3.2, after the 
soft-threshold filtering, we can construct a pseudo-inverse 
of  ,

k
i jf  as  

    , 1, , , 1
,

, , 1 , 1,

( , , ) ( , , )1
4 ( , , ) ( , , )

k k k k
i j i j i j i jk

i j k k k k
i j i j i j i j

q w f f q w f f
f

q w f f q w f f
 

 

 
 
   

   

    ,          (3.13) 
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2
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2

y z y z w

wq w y z y y z w

wy y z w

  

   

    

.                 (3.14) 

         That is, we have a soft-threshold algorithm for TD 
minimization in the following pseudo-code: 
   S1: Initialize the parameters k , w ; 
   S2: Update the current reconstruction using Eq. (3.2); 
   S3: Perform the non-linear filter using Eq. (3.13); 
   S4: Go to S2 until the stopping criterion is met. 
 

4. NUMERICAL SIMULATION 
 
To demonstrate the validity of the proposed algorithms, we 
implemented them in MatLab and performed numerical 

tests. We assumed a circular scanning locus of radius 57.0 
cm and fan-beam geometry. The object was a modified 
Shepp-Logan phantom in a compact support with a radius of 
10.0 cm. We used an equi-spatial virtual detector array of 
length 20.0 cm. The detector was centered at the system 
origin and made perpendicular to the direction from the 
origin to the x-ray source. The detector array consisted of 
300 elements.  For each of our selected numbers of 
projections over a full-scan range, we first equi-angularly 
acquired the corresponding projection dataset based on the 
discrete projection model shown in Fig. 1.  Then, we 
reconstructed the images using the following four methods: 
(1) the classical SART iteration method without the 
regularization of sparsity, (2) the TV minimization 
algorithm implemented in [2] using the steepest descent 
search method, (3) the TV minimization algorithm with 
soft-threshold filtering proposed in Subsection 3.2, and (4) 
the TD minimization method with soft-threshold filtering 
proposed in Subsection 3.3.   

 
                        (a)                     (b) 

 
                       (c)                    (d) 
Figure 2. Reconstruction from 21 noise-free projections. (a) The 
reconstruction using  the SART method without the TV 
minimization, (b) using the steepest descent method for TV 
minimization, (c) and (d) using the soft-threshold filtering methods 
for TV and TD, respectively. The display window is [0,0.5]. 

     To accelerate the convergence, we employed the 
projected gradient method [8] to determine an optimal 
threshold w  for each filtering, which is similar to what we 
have done in [12]. For all the above methods, the parameter 

k  in the SART iteration formula in Eq.(3.2) was set to be 
the constant 1.0, and the stopping criterion was defined as 
reaching the maximum iteration number 5000. Figs. 2 and 3 
show the reconstructed 256x256 images from 21 noise-free 
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and noisy projections, respectively. For the given finite 
iteration number 5000, the results in Figures 2-3 shows that 
the proposed TV and TD minimization methods outperform 
the traditional steepest descent search method. Meanwhile, 
the TD minimization is not only simpler for practical 
implementation but also performs slight better than TV.  
Therefore, we believe that the proposed TD minimization 
method in this paper can attract many applications in the 
near future 
 

 
                        (a)                     (b) 

 
                       (c)                    (d) 

Figure 3. The counterparts of Figure 2 from projections corrupted 
by Poisson noise, assuming 5X104 photons per detector element. 
 

5. DISCUSSIONS AND CONCLUSION 

Clearly, the pseudo-inverse transforms constructed in this 
paper can also be regarded as non-linear filters. However, 
we prefer to call them pseudo-inverse transforms, because 
they serve as inverse transforms of DGT and DDT 
respectively after the soft-threshold filtration defined by Eq. 
(2.3) in the framework of soft-threshold filtering 
framework.        
        In conclusion, we have constructed a pseudo-inverse of 
the discrete gradient transform and a pseudo-inverse of the 
discrete difference transform to apply the soft-threshold 
filtering principle for image reconstruction subject to a 
sparsity constraint. In the spirit of the above-described 
strategy for algorithm construction, we can derive a variety 
of algorithms of this type. In the near future, we will 
investigate and evaluate other reconstruction schemes with 
numerical, physical, preclinical and clinical datasets. 
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Investigation of Image Reonstrution in CT with a LimitedNumber of Stationary SouresD. Xia1, J. Bian1, X. Han1, E. Y. Sidky1, J. Lu2, O. Zhou2, and X. Pan1
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Abstract�As arbon-nanotube (CNT) X-ray soures withperformane properties omparable to that of X-ray tubesin onventional CT are beoming available, interest existsin developing innovative CT imaging systems employingstationary arrays of CNT soures beause they possess anumber of potential advantages over onventional CT sys-tems. However, various physial and ost onstraints anlimit the number of CNT soures within the arrays, or,equivalently, the number of projetion �views�, in a sta-tionary CNT-based CT system. In this work, we investi-gate image reonstrution for several CNT-based CT sys-tems of pratial interest that use di�erent on�gurationsof CNT-soure arrays. In addition, we investigate the ef-fet of linear and urved arrays of CNT soures on imagereonstrution. Results of the study demonstrate that im-ages with quality omparable to that of onventional CTan be reonstruted for CNT-based CT systems of di�er-ent on�gurations with either linear or urved CNT sourearrays. I IntrodutionConventional omputed tomography (CT) systems gen-erally use single or dual soures for illuminating the im-aged subjet and ollet projetion data at multiple viewsby moving either the soure(s)/detetor or imaged sub-jet. The movement of soures/detetor at high speedwith high preision imposes a di�ult hallenge on thedesign, alibration, and maintenane of higher through-out and higher resolution CT systems. In reent years,there have been signi�ant advanes in the developmentof arbon-nanotube (CNT) X-ray soure [1, 2℄. In on-trast to onventional X-ray tubes with thermioni ath-odes, CNT soures may have a number of potential ad-vantageous features, inluding ultra-fast swith, ompatsize, and faile eletroni ontrol. E�ort has been de-voted to developing radiography [3℄, miro-CT [4℄, anddigital breast tomosynthesis (DBT) [5℄ systems that em-ploy CNT X-ray soures. An unique feature of CNTsoures is their ompatness, whih allows their integra-tion to form a ompat array of CNT X-ray soures. CTimaging system uses stationary arrays of CNT soures anahieve faster imaging than onventional CT, beause itreplaes the mehanial rotation of the imaged subjet orsoure(s)/detetor in onventional CT imaging with fasteletroni swith of CNT soures.In a typial san of onventional CT, projetion dataare typially aquired at a large number (400 ∼ 1000) of

views, so that images with no signi�ant aliasing artifatsan be reonstruted by use of analyti algorithms suh as�ltered-bakprojetion (FBP) algorithm. Arrays of inte-grated CNT soures o�er the opportunity for developinginnovative CT systems with stationary soures tailored tospei� appliations. In the CT systems, di�erent CNTsoures an be interpreted as di�erent projetion views ofa single soure in onventional CT imaging. Despite thefat that an array of soures may onsist of a onsider-able number of CNT soures, however, as ompared tothe number of projetion views in onventional CT imag-ing, the number of CNT soures is substantially low dueto various physial and ost onstraints. When imagesare reonstruted from data olleted at suh a numberof "views" (or, equivalently, CNT soures) by use of an-alyti algorithms, images generally su�er from signi�antaliasing artifats.A purpose of the work is to investigate whether, by useof optimization-based algorithms, images with redued ar-tifats an be reonstruted from data olleted at a smallnumber of "views" (or, equivalently, CNT soures). Also,CNT soures an be integrated, in general, into an arrayof di�erent shapes, inluding linear and urved shapes.However, levels of osts, alibration, and maintenane forarrays of di�erent shapes an be substantially di�erent.In fat, it is believed that a linear array of CNT souresis muh easier to make, alibrate, and maintain than is aurved array. Therefore, the seond purpose of the workis to investigate image reonstrution from data olletedCT systems that use stationary, linear or urved arrays.Results of the work an provide potentially valuable infor-mation and guidane for the design and manufature ofost-e�etive CNT-soure arrays and innovative CT imag-ing on�gurations.II Imaging ConfigurationsWe investigate several potentially useful imaging on-�gurations, as shown in Figs. 1 and 2, eah of whih usestationary, linear or urved arrays of CNT soures. Inpartiular, linear and urved arrays are used for formingsquare-/hexagon-shaped and irle-shaped imaging on-�gurations. A leading di�erene between the sets of on-�gurations shown in Figs. 1 and 2 is that the on�gura-
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Fig. 2. Imaging on�gurations with array gaps. Top row: irle-shapedon�gurations with 4 (left) and 6 (right) urved arrays. Bottom row:square-shaped on�guration with 4 (left) arrays and hexagon-shapedon�guration with 6 (right) urved arrays.tions in Figs. 1 ontains gaps between arrays. Gaps be-tween soure arrays of the on�gurations in Fig. 2 are in-trodued for aommodating pratial hardware and ostonstraints that are likely to be enountered in the assem-bly of the on�gurations. For the on�gurations studied,we use a total of 60 CNT soures. For example, in theon�guration with 4 or 6 soure arrays, there are 15 or10 CNT soures uniformly distributed on eah of, or aportion of eah, of arrays. For the irular imaging on-�guration, the 60 CNT soures are uniformly distributedover 2π. III Reonstrution algorithmsThe FBP algorithm is a widely used analytial algo-rithm for image reonstrution in pratial CT imaging.It an yield images of aeptable utility when a irulartrajetory is used and when data are aquired at a largenumber of projetion views. For non-irular on�gura-tions, suh as square- and hexagon-shaped on�gurations,one may, in priniple, rebin the olleted data into theform so that the FBP algorithm an be applied. However,as disussed above, CT systems with stationary, soure ar-rays are likely to have only a small number of soures, asompared to the typial number of views in onventional

Fig. 3. Phantoms 1 (left olumn) and 2 (right olumn) used in thenumerial studies. Display window: [0.0,2.0℄.CT imaging. In this ase, the data-rebinning proess islikely to introdue signi�ant data error and thus lead tosevere artifats in the reonstruted images. Therefore,the study thus will fous on whether optimization-basedalgorithms an reonstrut images with redued artifatsdiretly from data olleted with imaging on�gurationsemploying stationary arrays of CNT soures.The problem of image reonstrution disussed aboveentails image reonstrution from highly sparse data. Aonstrained total-variation (TV)-minimization algorithm,whih we simply refer to as the TV algorithm, has beendeveloped reently for image reonstrution from highlysparse projetion data [6, 7℄. It reonstruts an imagethrough minimizing the image TV subjet to the dataand other onstraints. In this work, we modify and ap-ply the TV algorithm to reonstruting images from dataaquired with imaging on�gurations displayed in Figs. 1and 2, whih use only 60 CNT soures (or equivalently,60 "views"). While the TV algorithm and its implemen-tation details have been desribed in Refs. [6, 7℄, addi-tional details onerning its modi�ations and appliationinvolved in the study will be reported at the meeting.Moreover, for evaluation of algorithm performane, wehave also implemented some existing algorithms suh asprojetion-onto-onvex-set (POCS) [8℄ and expetation-maximization (EM) algorithms [9, 10℄ and applied themto reonstruting from the same data sets.IV ResultsWe have performed omputer-simulation studies to in-vestigate and evaluate image reonstrutions for the imag-ing on�gurations desribed above.A Study materialsAs displayed in Fig. 3, we use two objets, whih sim-ulate suitases ontaining objets of di�erent shapes atdi�erent orientations, to generate projetion data. Forthe imaging on�gurations with urved arrays on a irleof a radius R = 40 m, we use a virtual 2D �at-panel de-tetor plaed at the enter of the rotation and assume thatthe line onneting the detetor enter and a CNT soureis perpendiular to the detetor panel. For the square-and hexagon-shaped imaging on�gurations without ar-ray gaps, the radii of their irumirles are idential to
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that of the irular on�guration. As suh, the lengths ofeah side for the square- and hexagon-shaped on�gura-tions are 56.6 m and 40 m. For eah of the CNT soureson an array, the orresponding detetor panel is parallelto the array. The detetor array onsists of 512 × 512elements eah of whih has a size of 1.17 mm.For the imaging on�gurations without array gaps inFig. 1, an equal number of CNT soures 60 CNT souresare distributed over the soure array, with an equal angu-lar interval of 6◦ for the irular on�guration, and withequal distane intervals of 4.0 m and 3.8 m, respetively,for the square- and hexagon-shaped on�gurations. Forthe imaging on�gurations with array gaps depited inFig. 2, an equal number of CNT soures are uniformlydistributed in the middle region of an array, with an equalangular interval of 4◦ for the irular on�guration, andwith equal distane intervals of 1.3 m and 2.0 m for thesquare- and hexagon-shaped on�gurations. This leads toan e�etive gap of 20◦ between any two soure arrays ineah of the on�gurations in Fig. 2.We have omputed projetion data from eah of thetwo phantoms using eah of the imaging on�gurationsdesribed above. In realisti CT imaging, it is likely thatthe underlying objets are ontinuous. Therefore, in anattempt to inlude realistially the ontinuous distribu-tion of the objets, we have used an analyti method toompute the line integrals through the objets. Beausethe imaging model based upon whih the TV and otheralgorithms developed is typially a disrete model, therewill be some inonsistenies between the analytially gen-erated data and the disrete imaging model used. Suhintentionally introdued inonsistenies serve as a test ofalgorithms' robustness when applied to data ontaininginonsistenies.In addition to visual inspetion of the reonstruted im-ages, we also use a number of metris to evaluate quantita-tively image properties reonstruted from data olletedwith di�erent on�gurations under study by use of di�er-ent algorithms. We desribe two of the metris used here:(a) root mean square error (RMSE) and (b) the universalquality index (UQI). RMSE is widely used for measuringdi�erenes between two images and is given by
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i − µr)indiates the ovariane of the two images. The higherthe UQI , the loser the reonstruted image is to thereferene image. It an be shown that UQI = 1.0 for twoidential images.B Image reonstrution for imaging on�gurationswithout array gapsWe �rst reonstrut images from data aquired witheah of the three imaging on�gurations shown in Fig. 1by use of EM, POCS, and TV algorithms, and display thereonstrutions in Figs. 4 and 5. The results suggest thatimages without signi�ant artifats may be reonstrutedfor the non-onventional on�gurations. Furthermore, itan be observed that the TV algorithm yields images withless artifats than those in images reonstruted by use ofother algorithms. In partiular, the TV algorithm ap-pears to be able to reover a thin sheet more auratelythan other algorithms. Using the true phantom imagesin Fig. 3 as the referene images and the orrespondingreonstruted images in Eqs. (1) and (2), we have alsoalulated the RMSEs and UQIs, whih are displayed inFig. 6. These quantitative results also indiate that theTV algorithm generally yield images of high quality, interms of RMSE and UQI metris, than do the other algo-rithms.C Image reonstrution for imaging on�gurations witharray gapsWe have also reonstruted images from data aquiredwith eah of the four imaging on�gurations shown in Fig.2 by use of EM, POCS, and TV algorithms. For the twoon�gurations with four arrays, as shown in olumn 1 ofFig. 2, we display reonstrution results in Figs. 7 and8, whereas for the two on�gurations with six arrays, asshown in olumn 2 of Fig. 2, we display reonstrutionresults in Figs. 9 and 10. Again, results in the study sug-gest that images without signi�ant artifats may be re-onstruted for the non-onventional on�gurations witharray gaps by use of the TV algorithm. On the other hand,other algorithms appear to be less e�etive than does theTV algorithm for imaging on�gurations with array gaps,as their images ontain artifats that seem to be moreprominent than those in the TV images. Also, using thetrue phantom images in Fig. 3 as the referene imagesand the orresponding reonstruted images in Eqs. (1)and (2), we alulated the RMSEs and UQIs whih are
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Fig. 4. Images reonstruted for the irular (top row), square-shaped(middle row), and hexagon-shaped (bottom row) on�gurations shownin Fig. 1 by use of the EM (olumn 1), POCS (olumn 2), and TV(olumn 3) algorithms. Display window: [0.0,2.0℄.

Fig. 5. Images reonstruted for the irular (top row), square-shaped(middle row), and hexagon-shaped (bottom row) on�gurations shownin Fig. 1 by use of the EM (olumn 1), POCS (olumn 2), and TV(olumn 3) algorithms. Display window: [0.0,2.0℄.

Fig. 6. RMSE and UQI results for the irular (�+�), square-shaped (�⋄�)and hexagon-shaped (�⋆�) on�gurations for phantoms 1 (left olumn)and 2 (right olumn), respetively. The three data points (from left toright) denoted with the same symbols are obtained with the EM, POCS,and TV algorithms.

Fig. 7. Images reonstruted for the irular (upper row) and square-shaped (lower row) on�gurations shown in the left olumn of Fig. 2by use of the EM (olumn 1), POCS (olumn 2), and TV (olumn 3)algorithms. Display window: [0.0,2.0℄.displayed in Figs. 11 and 12 for the on�gurations in Fig.2. These quantitative results also indiate that the TValgorithm generally yield images of high quality, in termsof RMSE and UQI metris, than do the other algorithms.V ConlusionsIn this work, we have investigated image reonstrutionfrom data aquired in CT systems onsisting of arrays ofstationary CNT soures by using reently developed TValgorithms. In partiular, we have studied whether im-ages without signi�ant artifats an be reonstruted forsuh systems with a number of CNT soures muh lowerthan the number of projetion views in onventional CT.
The first international conference on image formation in X-ray computed tomography 93



Fig. 8. Images reonstruted for the irular (upper row) and square-shaped (lower row) on�gurations shown in the left olumn of Fig. 2by use of the EM (olumn 1), POCS (olumn 2), and TV (olumn 3)algorithms. Display window: [0.0,2.0℄.

Fig. 9. Images reonstruted for the irular (upper row) and hexagon-shaped (lower row) on�gurations shown in the right olumn of Fig. 2by use of the EM (olumn 1), POCS (olumn 2), and TV (olumn 3)algorithms. Display window: [0.0,2.0℄.

Fig. 10. Images reonstruted for the irular (upper row) and hexagon-shaped (lower row) on�gurations shown in the right olumn of Fig. 2by use of the EM (olumn 1), POCS (olumn 2), and TV (olumn 3)algorithms. Display window: [0.0,2.0℄.

Fig. 11. RMSE and UQI results for the irular (�+�) and square-shaped(�⋄�) on�gurations for phantoms 1 (left olumn) and 2 (right olumn),respetively. The three data points (from left to right) denoted with thesame symbols are obtained with the EM, POCS, and TV algorithms.

Fig. 12. RMSE and UQI results for the irular (�+�) and square-shaped(�⋆�) on�gurations for phantoms 1 (left olumn) and 2 (right olumn),respetively. The three data points (from left to right) denoted with thesame symbols are obtained with the EM, POCS, and TV algorithms.Also, beause the ost for a linear array of CNT soures isonsiderably lower than that for a urved array, we haveinvestigated image reonstrutions for imaging on�gura-tions with linear and urved arrays of CNT soures. Inour studies, we have arried out quantitative omparisonof the performane of the TV algorithm and some well-known, existing algorithms. Results of the omparativestudies demonstrate that the TV algorithm an reon-strut images better than those obtained with the existing
94 The first international conference on image formation in X-ray computed tomography



algorithms for imaging systems with a number of station-ary CNT soures that is muh smaller than the number ofprojetions in onventional CT imaging. Based upon theresults, observations an also be made that images withvirtually idential quality an be reonstruted for CTsystems with linear and urved soure arrays and thusthat array shapes result little di�erene in reonstrutedimages. The work seems to indiate that a low-ost CTsystem of �exible on�guration with linear arrays of CNTsoures an yield images omparable to that of onven-tional CT. It is likely that suh low-ost, �exible CT sys-tems will �nd signi�ant appliations in biomedial imag-ing, seurity san, non-destrutive inspetion, and manyother areas. Referenes[1℄ G. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shi-moda, S. Chang, J. Lu, and O. Zhou, �Generation ofontinuous and pulsed diagnosti imaging x-ray ra-diation using a arbon-nanotube-based �eld-emissionathode,� Applied Physis Letters, vol. 81, pp. 355�357, 2002.[2℄ J. Zhang, G. Yang, Y. Cheng, , B. Gao, Q. Qiu, Y. Z.Lee, J. Lu, and O. Zhou, �Stationary sanning x-ray soure based on arbon nanotube �eld emitters,�Applied Physis Letters, vol. 86, pp. 184104, 2005.[3℄ J. Zhang, G. Yang, Y. Z. Lee, S. Chang, J. Lu, andO. Zhou, �Multiplexing radiography using a arbonnanotube based x-ray soure,� Applied Physis Let-ters, vol. 89, pp. 064106, 2006.[4℄ Z. Liu, Y. Guang, Y. Z. Lee, D. Bordelon, J. Lu, andO. Zhou, �Carbon nanotube based mirofous �eldemission x-ray soure for miroomputed tomogra-phy,� Applied Physis Letters, vol. 89, pp. 103111,2006.[5℄ X. Qian, R. Rajaram, X. Calderon-Colon, G. Yang,T. Phan, D. S. Lalush, J. Lu, and O. Zhou, �De-sign and haraterization of a spatially distributedmultibeam �eld emission x-ray soure for stationarydigital breast tomosynthesis,� Med. Phys., vol. 10,pp. 4389�4399, 2009.[6℄ E. Y. Sidky, K.-M. Kao, and X. Pan, �Aurate imagereonstrution from few-views and limited-angle datain divergent-beam CT,� Journal of X-Ray Sieneand Tehnology, vol. 14, pp. 119�139, 2006.[7℄ E. Y. Sidky and X. Pan, �Image reonstrution inirular one-beam omputed tomography by on-strained, total-variation minimization,� Physis inMediine and Biology, vol. 53, pp. 4777�4807, 2008.[8℄ R. Gordon, R. Bender, and G. T. Herman, �Al-gebrai reonstrution tehniques (ART) for three-dimensional eletron mirosopy and x-ray photog-raphy,� J. Theor. Biol., vol. 29, pp. 471�481, 1970.[9℄ A.P. Dempster, N.M. Laird, D.B. Rubin, et al.,
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Reonstrution from Sparse Data in O�set-Detetor CBCT
1J. Bian, 2J. Wang, 1X Han, 1E. Y. Sidky, 2J. Ye, 2L. Shao, and 1X. Pan

1The University of Chiago, 2Philips Healthare
Abstract�Computed tomography (CT) unit has been addedto advaned single-photon emission omputed tomography(SPECT) for aquiring anatomi information about the im-aged subjet. CT images obtained an be used for attenu-ation orretion in SPECT images and loalization. Hard-ware and ost onsiderations have led to the use of a CT-imaging on�guration in whih the CT �eld of view (FOV)is extended through the o�set of the X-ray detetor. How-ever, radiation dose in CT sans is of a onern. In thiswork, we investigate and develop algorithms, inluding thetotal-variation (TV) algorithm, for image reonstrutionfrom data aquired at a onsiderably redued number ofprojetion views by use of the o�set-detetor CT unit ofa ommerially available SPECT/CT system. Results ofthe study suggest that the TV algorithm an reonstrutimages of potential pratial utility from projetion viewssigni�antly fewer than what are used urrently. A pra-tial impliation of the work may lie in that the use ofwell designed algorithms may allow for a signi�ant redu-tion of CT sanning dose and time in SPECT/CT imagingthrough lowering the number of projetion views.I IntrodutionSingle-photon emission omputed tomography (SPECT)o�ers funtional information within a subjet through de-termining the spatial distribution of radiotraers withinthe subjet. In general, SPECT images arry little anatomiinformation about the subjet and also su�er from the at-tenuation e�et of the radiotraer-emitted gamma raysexperiened prior to their arrival at the detetor. Onthe other hand, omputed tomography (CT) an yieldanatomi information of high quality about the subjet.Therefore, ombined SPECT/CT systems, whih an yieldinformation about funtional proess within, and anatomistruture of, the imaged subjet, have been developed andmade available ommerially in reent years[1℄. Further-more, CT images with appropriately saled CT numbersan be used to orret for the attenuation e�et in SPECTimages for improving their visual quality and quantitativeauray.Reently, a few �at panel based x-ray CT systems havebeen developed for isotropi volume imaging, whih isused as a seondary imaging modality of a overall imag-ing or therapy devie to improve the diagnosti or therapyoutomes[?℄. Cost and hardware onsiderations have ledto the use of a detetor that an only o�er a CT �eldof view (FOV) smaller than the ross setion of a typ-ial adult patient. However, an o�set detetor on�gu-

ration an be used for expanding the CT FOV [3℄. Inthis ase, although data aquired at eah of the proje-tion views are trunated, it an be shown that, as longas the detetor o�set is less than the detetor size, CTimages without su�ering trunation artifats an be re-onstruted from projetion data olleted over an angu-lar range of 2π. Despite the fat that the inlusion ofCT sans promises added-on values to SPECT imagingby providing information about patient anatomy and at-tenuation orretion, radiation dose involved in CT sansonstitutes a t onern. An approah to reduing CT-sandose is to redue the number of projetion views at whihCT data are aquired while maintaining the pratial util-ity of CT images. Indeed, a byprodut bene�t of using asmall number of projetion views in CT imaging is thatthe imaging time an also be redued, thus dereasing thepotential impat of patient-motion on CT imaging.In this work, we investigate, develop, and implementa number of algorithms, inluding the reently developedTV algorithm, for CT-image reonstrution of potential,pratial utility from data aquired at a number of pro-jetion views substantially lower than that used in ur-rent CT sans of SPECT/CT imaging. In addition to aomputer-simulation study, whih are not inluded in thepaper, we have foused the study on image reonstrutionfrom real one-beam data olleted with an o�set-detetorCT unit of a ommerially available SPECT/CT system.For the ases studied, we demonstrate that CT imageswithout signi�ant artifats an be reonstruted by useof arefully designed algorithms from data aquired at aonsiderably redued number of projetion views in CTsans with an o�set-detetor on�guration.II SPECT/CT System and CT Imaging UnitIn our study, the Philips BrightView XCT (SPECT/CT)system was used to ollet data from a number of physialphantoms.The XCT system, whose geometry is shown in Fig. 1,inludes a CT unit omposing an X-ray soure and a �atpanel detetor, whih, along with the SPECT unit, ismounted on a rotation gantry. In the CT unit, the dis-tanes of the X-ray soure to detetor and to the enterof rotation are 133.2 m and 88.1 m, and the detetor
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Fig. 1. The Philips BrightView XCT (SPECT/CT) system (left) and theshemati of the o�set-detetor on�guration used in the XCT system(right). The red dot indiates the x-ray soure and the horizontal thikline segment denote the detetor. L indiates the o�set of the detetor.panel onsists of 1024 × 768 detetion elements of sizes
0.388 × 0.388 mm2. The detetor panel is o�seted hori-zontally by L = 17.7 m, as indiated in Fig. 1, allowinga FOV of 47 m(transaxial) × 14.4 m(axial).III Study MaterialsA Projetion data and image arrayIn the right panel of Fig. 1, we display shematially theo�set on�guration of XCT unit used in the study. In theon�guration, the detetor is o�set horizontally by 17.7m with respet to the middle line onneting the X-raysoure and enter of rotation. As suh, only the portionof the detetor on the left side of the middle line willollet (quasi) redundant information when the detetoris rotated over 2π.We have also performed real data studies involving dif-ferent physial phantoms. we report in the paper some ofthe results obtained in the pelvi phantom study (CIRSvirtually human pelvis phantom). The pelvi phantom,as shown in 2, is made from proprietary epoxy materialsthat mimi the density and radiation attenuation prop-erties of human tissue . It ontains anatomially preisebone, artilage, spinal ord, vertebral disks, musle, in-testines, bladder, prostate, retum and interstitial fat.In the study, we have olleted one-beam data at 720projetion views evenly distributed over 2π of a irulartrajetory from a number of physial phantoms, inlud-ing the pelvi phantom. Throughout the work, we referto a 720-view data set as the full data set. The pelvisphantom data are aquired using 2x4 binning, resulting aprojetion size of 1024×384 for eah view, and a detetorpixel size of 0.388×0.776 mm2. Projetion data orretedfor bakground, uniformity, detetor gain mode, and de-fet pixels. Low-frequeny drop and o�-foal radiation areboth ompensated for by deonvolution methods and thesatter is orreted by a kernel-based orretion method.Beause a fous of the study is image reonstrutionfrom data sets ontaining a small number of views, we thusextrat form three suh data sets by seleting, from thefull data set, data at 72, 120, and 180 views, respetively,

Fig. 2. The region enlosed by eah of the eight squares indiates aregion of interest (ROI) within whih the Pearson orrelation oe�ientis alulated for evaluating the similarity of a reonstruted image tothe referene image.uniformly distributed over 0 to 2π.In the study, we reonstrut an image on a disretearray onsisting of 300 × 420 × 189 voxels of 1 mm3 size,representing 189 transverse slies of dimension 300× 420.B Reonstrution algorithmsWe have reently developed an algorithm for imagereonstrution from sparse data. The algorithm reon-struts an image by the minimization of the image's totalvariation (TV) subjet to the data and other onstraintonditions [4, 5℄. The fous of the work is to investigateand evaluate the performane of the TV algorithm in im-age reonstrution from these data sets. However, for thepurpose of omparison, we have also investigated existingalgorithms suh as the FDK and projetion-onto-onvex-set (POCS) for image reonstrution from the same datasets. Some modi�ations to the reonstrution algorithmsare neessary so that they an aommodate adequatelythe partially (quasi) redundant information ontained inthese data sets olleted with an o�set-detetor geome-try. Modi�ed FDK algorithms exist for dealing with o�setdata sets. In the work, we have adjusted the POCS andTV algorithms so that they an adequately deal with thepartially (quasi) redundant data information. Details ofthe modi�ations to the POCS and TV algorithms will bereported at the onferene.C Evaluation metrisIn addition to visual omparison of images reonstrutedby use of the algorithms, we have also used a number ofmetris desribed below for quantitative evaluation of re-onstrutions. In the alulation of the metris, a refer-ene image (i.e., the �ground truth�) is needed. For realdata studies, there is no ground truth available. As suh,we will use the FDK reonstrution from the full data setas the referene image beause the FDK reonstrutionfrom full data is used widely urrent SPECT/CT imagingpratie.Pearson orrelation oe�ient The Pearson orre-lation oe�ient an be used as an index measuring thesimilarity of a reonstruted image to a referene image
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within a seleted region of interest (ROI), and it is de�nedas
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j −µr) the ovariane be-tween the reonstruted and referene images. It shouldbe noted that the summations above are all arried outover the voxels within a seleted ROI of the images. Thehigher the orrelation oe�ient, the more similar the re-onstruted image to the referene image. Clearly, twoidential images lead to a perfet orrelation ρ = 1.0.Attenuation fators An important appliation of CTimages in SPECT imaging is to use them for estimatingthe attenuation fators that an be inorporated in the re-onstrution of SPECT images for potentially improvingtheir quantitative auray. In general, a more aurateestimate of attenuation fators is likely to lead to an im-proved attenuation orretion in SPECT imaging. Theattenuation fator is de�ned as
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, (2)where f(~r) denotes a CT estimate of the attenuation dis-tribution at loation ~r, and α̂ the diretion of the linealong whih the integral is arried out. In the study, wealulate attenuation fators using images reonstrutedfrom data sets ontaining small numbers of views by use ofthe reonstrution algorithms desribed above and om-pare them with those obtained from the referene image.IV ResultsUsing the FDK, POCS, and TV algorithms modi�ed tohandle the partially (quasi) redundant data information,we have reonstruted images from data sets ontaining72, 120, and 180 projetion views, respetively, whih,as desribed above, were seleted from the full data setaquired at 720 projetion views.A Image reonstrutionWe �rst reonstruted images by use of the FDK, POCS,and TV algorithms from the 72-view data set and displaythem in Fig. 3. For omparison, we also display the im-age reonstruted from the full data set by use of the FDKalgorithm. As expeted, the FDK reonstrution from 72-view data su�ers from aliasing artifats due to the lak ofsu�ient angular samples. Although the POCS algorithman redue somewhat suh artifats, some artifats from

Fig. 3. Images reonstruted from the 72-view data set by use of theTV (top right), FDK (bottom left), POCS (bottom right) algorithms.For omparison, the FDK reonstrution from the full data set is alsodisplayed in the top-left panel as the referene image. Display window:
[0.0, 0.4] m−1sampling aliasing and data noise remain in the reonstru-tions. However, it an be observed that the TV image isvirtually free of suh aliasing artifats and that it appearsto omparable to the FDK referene image reonstrutedfrom the full data set.We then reonstruted images by use of the FDK, POCS,and TV algorithms from the 120- and 180-view data setsand display them in Figs. 4 and 5, respetively. Again, wealso display the image reonstruted from the full data setby use of the FDK algorithm for the purpose of ompari-son. In these ases, despite the fat that as the numbersof projetion views inrease, the aliasing artifats in FDKand POCS reonstrutions diminish onsiderably, the ef-fet of the lak of angular samples remains visible. On theother hand, it an be observed that the quality of TV re-onstrutions, in terms of spatial and ontrast resolution,appears to be enhaned as the number of views inreases.Also, the TV reonstrution appears to be less noisy thanthe FDK referene image.B Quantitative evaluationFor an image reonstruted by use of one of the threealgorithms from one of the seleted data sets, we havealso alulated by using Eq. (1) its Pearson orrelationoe�ients with respet to the referene image, and theresults are displayed in Figs. 6, 7, and 8, respetively.Based upon the results, it an be observed that the TVreonstrutions have onsistently higher Pearson orrela-tions than other reonstrutions, suggesting that the TValgorithm yields images loser to the referene image thanother algorithms.A leading utility of CT images in SPECT/CT imagingis for attenuation orretion in SPECT. In an attempt tofurther evaluate this utility of CT images reonstruted
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Fig. 4. Images reonstruted from the 120-view data set by use of theTV (top right), FDK (bottom left), POCS (bottom right) algorithms.For omparison, the FDK reonstrution from the full data set is alsodisplayed in the top-left panel as the referene image. Display window:
[0.0, 0.4] m−1

Fig. 5. Images reonstruted from the 180-view data set by use of theTV (top right), FDK (bottom left), POCS (bottom right) algorithms.For omparison, the FDK reonstrution from the full data set is alsodisplayed in the top-left panel as the referene image. Display window:
[0.0, 0.4] m−1by use of the algorithms for data ontaining relative smallnumber of projetions, we have also alulated the atten-uation fators de�ned in Eq. (2) based upon the reon-struted images. In Fig. 9, we show the attenuation fa-tors omputed for a group of seleted points within eah ofthe images reonstruted by use of the FDK, POCS, andTV algorithms from the 72-view data set. For ompari-son, the attenuation fators omputed for the same groupof points within the referene image are also displayedin Fig. 9. Furthermore, the 72-view attenuation-fatorresult for eah algorithm and the referene attenuationfator shown in Fig. 9 an be interpreted as an �image�and a �referene image�. Therefore, using the results inEq. (1), we also alulated the Pearson orrelation oe�-
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Fig. 6. Pearson orrelation oe�ients of images reonstruted from the72-view data by use of the FDK (+), POCS (△), and TV (⋄) algorithmsfor the eight ROIs indiated in Fig. 2.
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Fig. 7. Pearson orrelation oe�ients of images reonstruted from the120-view data by use of the FDK (+), POCS (△), and TV (⋄) algorithmsfor the eight ROIs indiated in Fig. 2.
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Fig. 8. Pearson orrelation oe�ients of images reonstruted from the180-view data by use of the FDK (+), POCS (△), and TV (⋄) algorithmsfor the eight ROIs indiated in Fig. 2.
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Fig. 9. Attenuation fators omputed for a group of seleted pointswithin eah of the images reonstruted by use of the FDK (dotted),POCS (dash-dotted), and TV (dashed) algorithms from the 72-view dataset. For omparison, the attenuation fators omputed for the samegroup of points within the referene image are also displayed (solid).
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Fig. 10. Pearson orrelation oe�ients of the attenuation fators inFig. 9, omputed from images reonstruted by use of the FDK (∗),POCS (△), and TV (⋄) algorithms, with respet to that omputed fromthe referene image.ients of the �image� to the �referene image� (i.e., for theentire group of the seleted points,) and show the oe�-ient results in Fig. 10. Based upon the results in Figs.9 and 10, it an be observed that, as far as the refereneimage is onerned, the TV algorithm yields more au-rate attenuation fators than other algorithms, althoughthe extent of auray improvement depends upon the al-gorithms, data quality, and the amount of data (suh asthe number of views) to be onsidered.V DisussionsThe general onern of radiation dose in CT imagingmotivates the study on whether it is possible to lowerradiation dose in CT imaging without sari�ing the CT-image utility for spei� pratial tasks. An approahto reduing the imaging dose is to lower the number of

projetion views. In this work, spei�ally, we have in-vestigated and demonstrated aurate reonstrution ofCT images from data olleted with an o�set detetor ata number of projetion views substantially smaller thanthat urrently used in SPECT/CT imaging. The TV andPOCS algorithms have been modi�ed so that they anbe applied to reonstruting images from data olletedwith an o�set-detetor CT unit of SPECT/CT system.In addition to visual inspetion of reonstruted images,we have also used several metris for quantitative evalu-ation of images reonstruted and attenuation fators es-timated. We have arried out extensive studies in whihsimulation and real data were used, although only a smallportion of the study results is presented due to the pageonstraint. We plan to report additional, detailed re-sults at the onferene. Results of our study demonstratethat the TV algorithm an reonstrut images from dataontaining projetion views signi�antly fewer than thefull data set urrently aquired in a typial SPECT/CTsan and yield attenuation fators omparable to thoseobtained by use of the FDK algorithm from the full dataset. A pratial impliation of the work may lie in that theuse of a well designed algorithm suh as the TV algorithmmay allow for a signi�ant redution of CT imaging dosein SPECT/CT through lowering the number of projetionviews. Referenes[1℄ B. Hasegawa, K. Wong, K. Iwata, W. Barber, A. Hwang, A. Sakdi-nawat, M. Ramaswamy, D. Prie, and R. Hawkins, �Dual-modalityimaging of aner with SPECT/CT,� Tehnology in Caner Re-searh and Treatment, vol. 1, no. 6, pp. 449�458, 2002.[2℄ M. O'Connor and B. Kemp, �Single-photon emission omputed to-mography/omputed tomography: basi instrumentation and inno-vations,� in Seminars in nulear mediine, vol. 36, no. 4. Elsevier,2006, pp. 258�266.[3℄ W. Chang, S. Lonari, G. Huang, and P. Sanpitak, �Asymmetrifan transmission CT on SPECT systems,� Physis in Mediine andBiology, vol. 40, pp. 913�928, 1995.[4℄ E. Y. Sidky, K.-M. Kao, and X. Pan, �Aurate image reonstru-tion from few-views and limited-angle data in divergent-beam t,�Journal of X-Ray Siene and Tehnology, vol. 14, pp. 119�139,2006.[5℄ E. Y. Sidky and X. Pan, �Image reonstrution in irular one-beam omputed tomography by onstrained, total-variation mini-mization,� Physis in Mediine and Biology, vol. 53, pp. 4777�4807,2008.
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Compensator Approaches for Intensity Modulated Computed 

Tomography 

Steven Bartolac, Sean Graham, Jeff Siewerdsen and David Jaffray 

 

Abstract --- In computed tomography (CT), the tradeoff between 

image quality and imaging dose is an inherent factor in selecting 

the appropriate imaging technique.    Modulation of the fluence 

intensity, spatially across the X-ray beam, and independently for 

each projection, has the potential to significantly improve or 

maintain regional image quality, while reducing radiation dose 

to the patient due to imaging.  This approach is referred to as  

Intensity Modulated Computed Tomography (IMCT).  In this 

work several compensator approaches for intensity modulation 

in CT are evaluated.  Modulation profiles were generated using 

a simulated annealing optimization method that attempts to 

achieve prescribed spatially-dependent SNR criteria in a 

simulated water phantom.  The resulting SNRs for each 

compensator approach were analysed in terms of  regional SNR.  

This study suggests that the addition of constraints may increase 

feasibility by reducing the number of physical variables while 

still maintaining improved regional SNR performance.   

INTRODUCTION  

 
   Computed tomography continues to advance in terms of 

increased speed, resolution, image quality and volume 

coverage capabilities. These advancements make CT an 

attractive candidate for a growing number of applications. 

However, more extensive use of the modality is hindered by 

the radiation cost to the patient [1].   Cone-beam computed 

tomography (CBCT), for example, has received considerable 

attention for its benefits to patients in the fields of image-

guided radiotherapy and surgery;  despite these benefits, 

current practice generally limits the number of CT scans a 

patient can receive and/or restricts images to lower quality in 

order to minimize radiation dose to the patient due to 

imaging.   

 

                                                           

   Steven Bartolac is with the Department of Medical Biophysics, University 

of Toronto, 610 University Ave., Toronto, Ontario M5G 2M9 CANADA.  

(Tel: (416) 946-4501. Email: steve.bartolac@rmp.uhn.on.ca)  

     Sean Graham was with the Department of Medical Biophysics, University 
of Toronto, 610 University Ave., Toronto, Ontario M5G 2M9 CANADA. He 

is now with Bubble Technology Industries, Chalk River, Ontario, K0J 1J0 
CANADA. (Email: sean.graham@rmp.uhn.on.ca) 

     Jeff Siewerdsen was with the Radiation Medicine Program, Princess 

Margaret Hospital/Ontario Cancer Insitute, 610 University Ave., Toronto, 
Ontario, M5G 2M9 CANADA. He is now with the Department of 

Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave., 
Baltimore, Maryland 21205. (Email: jeff.siewerdsen@jhu.edu) 

     David Jaffray is with the Radiation Medicine Program, Princess Margaret 

Hospital/Ontario Cancer Insitute, 610 University Ave., Toronto, Ontario, 
M5G 2M9 CANADA.  (Email: david.jaffray@rmp.uhn.on.ca) 

 
 

   Much research has been devoted to decreasing dose to the 

patient while maintaining or bettering image quality.  Some 

approaches, including automatic exposure control [2] and the 

addition of bow-tie filters [3-5], have made strides towards 

more efficient management of the X-ray fluence.  However, 

the ideal allocation of X-ray fluence would take into account 

both patient-specific anatomy of the patient as well as the 

specific imaging task.  Previous work [5,6] has shown that 

modulation of the fluence intensity across the X-ray beam, 

independently for each projection, has the potential to 

improve or maintain image quality where it is required, and 

allow for poorer image quality elsewhere.  Such an approach 

could potentially yield great dose sparing to the patient 

without cost in the utility of the images.  Benefits would 

extend across both diagnostic and image-guided techniques.   

The authors refer to this approach as Intensity Modulated 

Computed Tomography (IMCT).     

 

   A principal challenge in the design of an IMCT system is 

choosing an appropriate compensator approach for the 

modulation.  It is likeley that a feasible approach will include 

physical constraints  that reduce the number of variables by 

limiting the number of allowable modulation patterns. This 

work evaluates different approaches for their ability to deliver 

prescribed signal-to-noise ratio (SNR) values.    

 

 

THEORY AND METHODS 

   Implicit to the following approach is that a priori 

information about the object is available. This a priori 

knowledge may come from a previous CT scan, or a 

population based model for example.   Various analytic 

methods are then available for predicting the noise outcome 

of different fluence patterns.  The approach taken is to pose a 

desired SNR distribution and to attempt to solve the inverse 

problem of finding a modulation profile that generates the 

desired SNR criteria via an optimization routine.   

 

   In this study we make the assumptions of Poisson 

distributed noise based on photon counting statistics, a 

parallel ray geometry, and a filtered backprojection 

reconstruction routine for analysis. Under these conditions, 

the expected variance at each voxel position (x,y) can be 

described by [7] 
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where ( , )f x y  represents the object function, ( i , t )are 

coordinates that parametrize the projection (and 

backprojection) ray paths as shown in Fig. 1,   is the 

detector pixel width, M is the number of projections, 

( )
i

I t is the output intensity of the X-ray fluence before 

modulation, ( )
i

m t is the applied modulation factor, and h is 

the convolution kernel of the filtered backprojection 

operation.   

 

   All experiments were carried out in Matlab. A simulated, 

cylindrical, water phantom with a diameter of 28 cm was 

used in all analyses, as shown in Fig. 2 (a).  Projections were 

taken over 180
o
 with 192 intervals.  In order to achieve faster 

optimization times, modulation profiles were generated on 

low resolution images (0.54×0.54×0.5 cm voxel size).  The 

prescribed, target SNR values were defined for varied regions 

of interest in the object, and stored in the matrix SNRd (where 

the subscript denotes distinction from other matrices, and not 

index number), as illustrated in Fig. 2 (b).  The target high 

SNR value was chosen such that it would result in a target 

standard deviation of noise of 1% with respect to water at 1 

mm resolution in x and y.   

 

   In general, arbitrary SNR values cannot be achieved 

because the filtered backprojection method introduces 

correlations between the noise at different image locations.  

Moreover, various fluence profiles may produce the same 

image quality result but have different dose outcomes.  

Therefore, an iterative method was used to find a modulation 

profile that minimizes the cost function  
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where Ws is a matrix of weights on the desired image 

qualities, subscripts 0 and n denote initial and current 

iteration number respectively, D is proportional to the total 

dose, and w  is a separate weight that defines the relative 

importance of the dose term.   The weightings can be set 

depending on task-specific priorities. In this study, w was 

arbitrarily set to 1, and the weights in Ws were chosen to   

boost the priority of the high SNR region, and give 

intermediate priority to the low  SNR region.  Note that the 

first term in (2) requires updating the SNR values at each 

iteration of the optimization algorithm, which can be 

achieved by application of (1).     

 

   Optimization can be performed using any choice of feasible 

algorithm. In this case, we chose a simulated annealing 

approach. Advantages of simulated annealing algorithms are 

that they allow „uphill‟ moves which allow the solution to 

escape local minima.  Long iteration times were used for the 

following studies in order to allow for good convergence. 

Further details on simulated annealing can be found 

elsewhere [5,8].  

 

   Constraints were applied by limiting the number of 

modulation factors allowed, and/or the number of projections 

over which the factors can vary.  The following cases were 

considered: 

 

(i) no constraint on number of modulation factors 

(ii) three (3) modulation factors per projection  

(iii)  one  (1) modulation profile for all projections 

(iv) eight (8) modulation factors for every 16 projections 

and at fixed locations 
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FIGURE 1: Schematic illustrating the parallel ray geometry and 

associated coordinates.  
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FIGURE 2: (a) simulated water phantom and (b) prescribed SNR regions 
within water phantom.  SNR values appear high because the images are 

at low resolution.  
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   As an example of how these constraints may be interpreted 

physically, (ii) could conceptually be achieved by a system of 

two moving collimator leaves; (iii) would require a fixed 

compensator, preset before the scan begins; and (iv) might 

involve a series of stationary filters that could be changed at 

large angular intervals. Case (i) is used as a reference 

scenario and can be considered to be that of an ideal, 

unconstrained modulator. Analysis of the data was performed 

by comparing the predicted SNR values of (2) against the 

prescribed values for each case. 

 

RESULTS AND DISCUSSION 

   Modulation profiles generated by the optimization routine 

are shown in Fig. 3. In the unconstrained case, the light and 

dark regions indicate the regions of greatest and lowest pass 

of fluence intensity to the object, respectively. Spatially, 

these regions correspond to the prescribed high and low SNR 

regions in the object. Similarly, the constrained cases show 

similar trends but with reduced degrees of freedom. It is 

noted that in case (ii) there are small deviations that appear in 

the arc shaped light region instead of the smooth curve seen 

in case (i).  While they appear to be artefacts of the algorithm, 

these abrupt deviations probably substitute the more subtle 

drop in fluence seen in case (i) near the same regions, and are 

likely important for compensating the thinner areas of the 

phantom, in order to more closely match the uniform 

prescribed SNR regions. 

 

   The resulting SNR values from the generated modulation 

profiles are also shown in Fig. 3.  In all cases, the high SNR 

region shows greatest agreement with the prescribed values,  

as was expected since the cost function was weighted to give 

priority to this region.  Overall, the unconstrained case shows 

the best performance, also as expected.  In the remaining 

cases, the optimal method based on SNR outcomes is the 

second case, which generated values that agreed most closely 

to the prescribed ones. For the case of a single modulation 

profile for all projections, there is also success in achieving 

the high SNR region, but this region extends well into the 

prescribed low and intermediate SNR regions.  Case (iv) 

shows more distinction between high, low  and intermediate 

SNR values but has a more irregular pattern, with rectangular 

edges and less smooth transitions. In general, all cases 

succeeded in generating SNR distributions that provided 

regionally high SNR performance while limiting fluence to 

external regions.  Reconstructions of the cylinder are also 

shown in Fig. 4, where random Poisson noise was added to 

the projections prior to reconstruction according to each 

modulation profile. For better visual comparison between 

high and low SNR regions, three inserts were added to each 

region, where the inserts deviate from the signal of water by 

2%.  Observations of these images reinforce those of the SNR 

distributions: the image generated using a modulation profile 

constrained to three modulation factors per projection 

achieves results closest to the ideal unconstrained scenario.   

 

   These outcomes suggest that the introduction of constraints 

to the modulation scheme may lead to substantial decreases 

in exposure to the patient due to X-rays while still achieving 

regional, high performance SNRs where prescribed by the 

user.  The reduction in variables due to the physical 

constraints further suggests that these methods can lead to a 

more feasible implementation of IMCT than an unconstrained, 
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Figure 3 :  Modulation profiles generated to meet specified SNR criteria for the case of (a)  unconstrained modulation, (b) modulation constrained to  three 

factors per projection,  (c)  modulation at fixed intervals in detector position, t, and angular interval, θi, and (d) single  modulation profile over all angles. The 

resulting SNR distributions for each case are shown below the profiles.  Contrast in modulation profiles has  been enhanced to allow for greater visibility of 

low intensity modulation factors. Values of SNR may appear high because resolution of images is low. 
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continuous modulation approach.  The optimal choice 

suggested by this study is the approach where modulation 

factors are limited to few values per projection, but allowed 

to vary in extent and location.  However, the best choice in 

compensator method will depend on additional factors, 

including mechanical design considerations.   A more 

comprehensive comparison of techniques  will also need to 

include scatter and beam hardening effects in the model, 

which were ignored in this simplified study, tolerances set by 

the user for desired dose and SNR preferences, and a more 

complete analysis of possible variations on the techniques 

shown.  It is also recommended that more anatomic test 

objects, and alternative SNR distributions should also be 

explored.  

 

CONCLUSION 

   The results of this limited study suggest that regional, high 

SNR performance can be achieved, with reduced fluence to 

surrounding regions, through the use of largely constrained 

modulation profiles.   The optimal choice in compensator 

method will ultimately depend on further analysis of 

mechanical design factors, user-defined tolerances for SNR 

distributions, and the inclusion of more complicated X-ray 

physics (beam hardening, scatter). 
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FIGURE 4: Reconstructed images with simulated noise for the case of (a) 

unconstrained modulation, (b) modulation constrained to  three factors 

per projection,  (c)  modulation at fixed intervals in detector position, t, 
and angular interval, θi, and (d) single  modulation profile over all angles. 

„Inserts‟ have been added to the high and low SNR regions of the water 

cylinder for better visualization.   
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Spectral Shaping for Ultra-Low Dose  
CT Attenuation Correction in PET/CT 

Ting Xia, Adam M Alessio, Paul E Kinahan 

 Abstract– We explore the bias and noise characteristics of 
attenuation corrected (AC) PET images formed from ultra-low 
dose (sub-millisievert) CT imaging. Under the constraint of using 
current clinical x-ray components, the overall goal of this work is 
to find the combination of methods that (i) minimize CT dose and  
(ii) suppress noise and bias artifacts. In this study we determine 
x-ray spectra that reduce radiation dose, while maintaining AC-
PET image quality. We simulate CT and PET imaging with 
analytic simulation packages (CATSIM and ASIM) containing 
realistic models of x-ray tube spectra, beam conditioning, the 
bowtie filter, detector noise, and beam hardening. X-ray spectra 
were generated for a range of clinically viable filtration schemes 
with 80-140kVp generation, four filtration materials (Al, Cu, Mo, 
Sn), and filtration thicknesses of 0-1mm. The CT images, 
generated from each spectra across a range of tube currents, 
were used for attenuation correction of multiple realizations of 
PET data to evaluate noise and bias in the resulting AC-PET 
images. Results show that radiation absorbed doses of less than 
0.11mGy can be achieved with less than a 5% increase in PET 
image bias. Furthermore, appropriate choice of tube potential 
and filtration can lead to lower doses at matched PET image 
quality, or vice versa. Specifically, spectra that are higher energy 
and more narrow are generally more dose efficient for equivalent 
PET image quality. Comparison of propagation of bias and noise 
into the PET images indicate that both bias and noise in the CT 
image determine quantitative accuracy in the PET image.  

I. INTRODUCTION 
urrent clinical CT components for PET/CT are essentially 
identical to standalone CT systems and were designed for 

high-detail anatomic imaging, acquired in short time frames. 
These CT components require high flux x-ray generators and 
high throughput detectors. The CT images in PET/CT 
scanners provide PET attenuation correction and can provide 
valuable side information for PET image enhancement, such 
as in 4D CT imaging for PET motion compensation or CT 
guided PET image reconstruction. In essentially all cases, the 
CT image has a higher signal to noise ratio than is necessary 
for PET image quality requirements. That is, the CT image 
could often be acquired at a dramatically lower technique, 
with a lower radiation dose to the patient, with no detriment to 
the attenuation corrected (AC) PET image. At the limit where 
low dose CT SNR and/or artifacts are detrimental to PET 
image quality, CT noise/artifact suppression techniques can be 
employed make low dose CT acquisitions acceptable for PET 
attenuation correction. The key to this approach is the 
recognition that since diagnostic quality CT image are not 
required for PET attenuation correction, significant reductions 
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in patient radiation dose can be achieved by taking advantage 
of (1) lower SNR requirements, and (2) lower computational 
burden for CT image processing (e.g. respiratory gated and/or 
statistically-principled CT image reconstruction). 

This effort explores the bias and noise characteristics of 
AC-PET images derived from ultra-low dose (sub-
millisievert) CT imaging. There are numerous methods for 
reducing CT radiation dose such as reduction of mAs, x-ray 
tube pulsing, and beam conditioning. Our prior preliminary 
work explored the effect of adjusting kVp and reducing tube 
current below currently clinically available limits to determine 
the origin of the propagation of error into AC-PET images [1]. 
Through simulation studies, we showed that techniques can be 
used to significantly reduce the mAs needed for CT based 
attenuation correction if the CT is not used for diagnostic 
purposes. These results suggested that methods for data 
enhancement for ultra-low dose CTAC should focus on 
reducing bias and root mean square error (RSME) in CT 
images. 

CT images acquired at lower doses (higher noise) may 
benefit from methods to reduce image errors, such as 
sinogram smoothing [2; 3], iterative reconstruction, or 
compressed sensing [4]. CT imaging for PET-only 
applications demands substantially less image quality 
requirements than current ‘diagnostic‘ CT [5; 6]. This fact can 
help govern the selection of appropriate CT acquisition and 
processing techniques.  
  The goal of this work is to find the x-ray spectrum (kVp 
and filtration scheme) that minimizes radiation dose, while 
maintaining AC-PET image quality. A constraint is to use 
small or no modifications of current clinical x-ray components 
ultra-low dose PET/CT imaging, In other words the CT 
component would have to be capable of still producing 
diagnostic-quality CT images as part of a standard PET/CT 
scanner. 

II. METHODS 
We evaluate the impact of different x-ray spectra on CT 

radiation dose and the reconstructed AC-PET image. The x-
ray spectra are simulated with intrinsic tube spectra from 
current commercial CT systems and modified by varying 
filtration materials and thicknesses.  

A. Measurement Simulation Model 
We used Catsim [7] for the simulation of the CT images 

and estimation of the CT dose. The PET images were 
simulated with a simplified version of ASIM [8], where the 
output of Catsim was used as the attenuation correction data 
for PET simulations as illustrated in Figure 2. Both Catsim 
and ASIM are analytic simulation methods, which calculate 

C 
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noiseless line-integrals followed by appropriate addition of 
statistical noise. This approach allows for rapid generation of 
multiple i.i.d. realizations of sinogram data, but, unlike photon 
tracking simulations, are challenged in modeling more 
complex physics. 

CT raw data yi  are formed from the combination of a 
photon counting process pi  and electronic noise, modeled as 
a zero-mean Gaussian random process, using following [3; 9; 
10]:  

pi = Ek ⋅ Poisson DQE ⋅ Aik ⋅
1
S

exp(− lisoμok
o

∑ ) + yik
scatter

s
∑⎛ 

⎝ ⎜ 
⎞ 
⎠ ⎟ 

k
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ fCONV

yi = pi + Normal σ electronic( ) 
The electronic noise was fixed for all simulations so that it 

was approximately 0.035% of the total noise for a CT 
technique of 50 mAs, which is on the order of 160 photons. 
Higher and lower electronic noise levels were also simulated 
but are not reported here. The CT simulation models the 
effects of the x-ray source focal spot, tube spectra, beam 
conditioning, detector noise, bow-tie filter, scatter, and beam 
hardening. The PET simulation includes the effect of 
attenuation and photon counting. All components were 
modeled to match the geometry and tube properties of the GE 
Discovery STE PET/CT scanner. 

B. Spectra Variations 
Different x-ray spectra were generated starting with the x-

ray tube spectra from the manufacturer. The x-rays travel 
through the standard manufacturer’s bowtie filter, then 
through varying flat filters. The post-filtration spectra is 
evaluated in terms of mean energy and transmission 
efficiency, which for this work we define as the sum of 
photons in spectra divided by sum of photons in spectra with 
no flat filter. Interactions in filters are evaluated in 1keV 
increments across all energies.  

The CT spectra were varied with the following parameters: 
Tube voltages 80, 100, 120, and 140 kVp, plat filtration 
material Al (Z=13), Cu (Z=29), Sn (Z=50), Mo (Z=42), and 
filtration thickness 0 to 1mm in 0.05mm increments.  

C. Evaluation Methods 
The test object used was a uniform 20 x 30 cm elliptical 

cylinder containing FDG in water at a typical clinical 
concentration. All CT evaluations were simulated with 
rotation time 0.5 s, tube current ranging from 1000 mA down 
to 0.5 mA, slice thickness 3.125 mm. Data was corrected for 
beam hardening prior to reconstruction on 128x128 pixels 
over a 50 cm FOV (to match PET image dimensions). The CT 
images were converted to linear attenuation coefficients at 511 
keV using a modification of the bilinear scaling method [6; 
11]. The conversion parameters used for the CT-based 
attenuation correction (CTAC) are presented in Figure 1 and 
match those used in the GE DSTE PET/CT scanner. The PET 
images were reconstructed using filtered back projection on 
128x128 pixels over a 50 cm FOV. 
 With 25 independent data realizations acquired with each x-
ray spectra we evaluated the (1) total CT radiation absorbed 
dose, (2) CT image noise, bias, and RMSE, (3) PET image 
noise, bias, and RMSE.  

 
Figure 1. Conversion of CT image values to linear attenuation coefficients for 
CT-based attenuation correction (CTAC). 

III. RESULTS 

A. Spectra Properties 
Figure 2 presents spectra for 120kVp and 140kVp with Cu 
filtration showing a small subset of the simulated filters and 
potentials. As expected, increased filtration thickness 
increases the mean energy and reduces transmission 
efficiency.  

  
Fig 2. X-ray energy spectra incident on object after bowtie filter and varying beam filtration (0, 0.25, 0.5, 1 mm Cu) for 120 kVp (left) and 140 kVp (right).  
Legend contains thickness (mm) and transmission efficiency (%) for different filters.  Inset text reports the mean energy (keV) of each spectrum from 
softest to hardest spectra.  For each voltage, all spectra were generated with matched tube current. 
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B. Dose Efficiency 
Spatial dose distributions and total dose as a function of kVp 
behaved as expected. Representative images of the relative 
dose distribution in the simulated object demonstrate fairly 
uniform dose distribution with an increased dose to the 
periphery of object (despite use of bowtie). The transmission 
efficiency and mean energy of all of the simulated spectra 
versus total absorbed dose were calculated for all 320 
combinations (Figure 3). 

 
Figure 3. Transmission efficiency (% of surviving photons after 
filtration relative to no filtration) versus absorbed dose for a fixed 
tube current.  Each of 4 filtration materials is varied from 0.05 to 
1mm thickness in 0.05mm increments.  Results are presented for four 
voltage potential. 

C. CT and PET Images 
Figure 4 presents anecdotal CT images generated with 
different spectra resulting in matched absorbed dose. The 
higher energy spectra (140kVp, 1mm Cu) results in a CT 
image with visually less streak artifacts and noise. 

Figure 5 summarizes the CT and PET bias and RMSE for 
different kVp and Cu filtration versus absorbed dose. Each 
data point for a given spectra is generated with a different tube 
current, which linearly changes the absorbed dose. For a fixed 
absorbed dose, all metrics benefit from having a more narrow 
and higher energy spectra.  

For all spectra, the CT noise increases severalfold as the 
dose is decreased to below 0.1mGy. This noise does not 
propagate into the PET images as much as would be expected 
because the downsampling to PET resolution suppresses 
noise.  

For the lowest energy spectra (80kVp, no filtration), PET 
bias is below 5% when dose is greater than 0.30mGy. On the 
other end of the parameters, for the highest/narrowest energy 
spectra (140kVp, 1mm Cu), PET bias is below 5% when dose 
is greater than 0.11mGy. 

IV. DISCUSSION 
We would like to find the x-ray generation scheme that 

provides the most efficient use of dose for attenuation 
correction of PET emission data. A more dose efficient 
scheme would offer improved image quality for a matched 
absorbed dose or vice versa. These results indicate that more 
narrow, higher energy spectra are more dose efficient for these 
metrics where subtle contrast discrimination in the CT image 

is not necessary and overall image bias and noise are 
important.  

With the choice of x-ray tube determined by clinical CT 
image criteria, the selection of flat filtration material offers an 
alternative method to shape optimal spectral properties, such 
as providing better transmission efficiency with matched 
absorbed dose. Figure 3 suggests that for the four materials 
studied, there is no clear advantage to a particular material. 
That is, transmission efficiency versus dose shows an identical 
slope for all materials and the only variant is the material 
thickness. Assuming that finite, tube-current x-ray sources 
require a transmission efficiency of greater than 0.5, copper 
offers a good compromise of transmission and dose efficiency 
for a range of thicknesses [0-0.25mm]. On the other hand, 
only 0.1mm of the heavier metals of molybdenum and tin are 
required to reduce the transmission of efficiency of an 80kVp 
beam to less than 50%. 
 
 This simulation study of different x-ray spectra indicates 
that ultra-low dose CTAC imaging is possible with dose on 
the order of 0.11mGy, with minimal introduction of PET bias. 
Prior work [1, 2] has confirmed that additional steps for the 
reduction CT noise and artifacts offers the potential for even 
further reduction of dose. Furthermore, this study 
demonstrates that higher energy, more narrow x-ray spectra 
are preferred for CT-attenuation correction of PET images. 
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80kVp, 80mA, no filtration 

 

120kVp, 40mA, 0.5 mm Cu 

 

140kVp, 40mA, 1mm Cu 

 
Fig 4. Representative reconstructed CT images of elliptical phantom acquired with different techniques and x-ray spectra. These 
techniques deliver the same mean absorbed dose to object. 

 

 
 
 

 
Fig 5. Bias (top), RMSE (bottom) of CT (left) and PET (right) versus radiation absorbed dose from CT. At matched absorbed 
dose, the lower energy, unfiltered spectra (for example 80kVp no filtration) tend to have more bias, noise and RMSE than the 
higher energy, filtered spectra 
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Abstract — Cone-beam computed tomography (CBCT) can 

employ a large area X-ray beam in conjunction with a flat panel 
X-ray detector to scan a volumetric acquisition.  It can short 
examination times dramatically and improve visibility of 
vascular structures, thus have had a dramatic impact on body 
imaging in the past decades.  Though CBCT has so many 
advantages over conventional stop-and-shoot CT, the X-ray 
radiation dose to the body is still a major concern.  This work 
aims to lower the X-ray tube current (mAs) for radiation 
reduction and proposes a penalized weighted least-square 
(PWLS) scheme to obtain the noise-reduced low-mAs sinogram 
with decent image quality.  Considering the continuous sampling 
of CBCT projection as detection system rotates, a Karhunen–
Loéve (KL) transform is applied along the rotation direction for 
neighboring three projections.  In the KL domain, each two-
dimensional (2D) component is considered by an anisotropic 
Markov random filed (MRF) Gibbs function over the transverse 
and axial directions and a penalty is designed for the correlation 
over these two directions.  Gauss-Seidel update strategy is 
adapted to minimize the objective function.  A simulation study 
was performed to demonstrate the effectiveness of the proposed 
(KL-PWLS-2D) approach with comparison to a full 3D Gibbs 
smoothing strategy without considering the continuous sampling 
correlation (PWLS-3D).  The improvement gained by the 
proposed algorithm was documented by the profiles, contrast-to-
ratio (CTR) and noise-resolution tradeoff studies. 
 

Index Terms— Noise reduction, cone-beam computed 
tomography, low-dose, Karhunen-Loeve transform, penalized 
weighted least-squares, noise-resolution tradeoff 

I. INTRODUCTION 
Cone-beam computed tomography (CBCT) has demonstrated 
a dramatic impact on body imaging in the past decades.  
Unlike conventional stop-and-shoot CT, CBCT provides 
continuous volumetric data acquisition while the patient bed 
moves through the gantry during scanning.  The advantages 
of using CBCT include (1) dramatically shortened 
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examination times, (2) improved visibility of vascular 
structures, and (3) only selected region of interest (ROI), like 
breast, is exposed to radiation which results in improved 
image quality and spars the rest of the body from unnecessary 
radiation exposure, etc. [1].  With more and more concerns on 
the potential risk of X-ray radiation exposure to the body, 
reducing the X-ray radiation becomes one of the major efforts 
in the CT field.  Generally, minimizing X-ray exposure of 
CBCT to the patients could be achieved by lowering the X-
ray tube current (mA) or shorter exposure time.  However, the 
image quality of low mA acquisition protocol will be severely 
degraded due to excessive X-ray quantum noise [2, 3].  Thus, 
the reconstruction of low-mAs (or low-dose) CBCT images is 
essentially a noise problem. 

In this study, we present a statistical noise reduction 
algorithm for low-dose CBCT by applying a Karhunen–Loéve 
(KL) domain penalized-weighted least-square (PWLS) 
filtering scheme to reduce the noise of cone-beam sinograms.  
The KL transform reduces the 3D sinogam to 2D principal 
components by de-correlating the correlation of continuous 
sampling around the rotation axis.  The PWLS objective 
function is constructed based on the noise properties of the 
CBCT sinogram.  The weight in the PWLS objective function 
is estimated in high accuracy using an analytical formula that 
describes the relationship between data sample mean and 
variance [4-7].  The penalty in the PWLS objective function is 
adaptive to the signal-to-noise ratio (SNR) for each 2D 
component.  The objective function in the KL domain is 
minimized by the Gauss-Seidel update strategy [8-13].  The 
CBCT reconstructed images could be obtained by using the 
Feldkamp-Davis-Kress (FDK) algorithm [14] after the 
sinogram is processed by the proposed algorithm.  The 
effectiveness of the KL-PWLS-2D noise reduction algorithm 
is shown by a phantom simulation study and evaluated by 
profile through selected area and noise-resolution tradeoff 
studies with comparison to a fully 3D statistical smoothing 
(PWLS-3D) method without using the KL transform. 

 

II. METHOD 
In this study, the KL transform is first applied to account 

for the correlative information of continuous data sampling 
along nearby views of the CBCT sinogram.  For the i-th view 
of the sinogram data, its nearby views (the (i-1)-th and the 
(i+1)-th views) are selected to perform the KL transform.  
The implementation of the KL process could be described as: 

y Ay=%                                         (1) 

Noise-Reduction for Low-Dose Cone-Beam CT 
Sinograms 

Yi Fan, Hongbin Zhu, Hongbing Lu, Jing Wang, and Zhengrong Liang 
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where y%  and y  are 3 N×  vectors denoting the KL 
transformed components and the corresponding original 
sinogram in spatial domain, respectively, N  is the product 
multiplied by the number of detector bins (transverse 
direction) and slices (axial direction).  Each row of y  is the 
vector of one complete dataset obtained at one rotation angle.  
A is the transform matrix of dimension 3 3× and could be 
computed directly from the sinogram. 

In the KL domain, the PWLS criterion can be used to 
estimate the corresponding ideal sinogram by minimizing the 
following objective function [8]: 

1( ) ( ) ( ) ( ) ( )l l l l l l l l
l

y y R
d
αλ λ λ λ−′Φ = − Σ − +% % % %%% %      (2) 

Formula (2) consists of two terms.  The first term denotes 
the weighted least-square (WLS) measurement.  Notation ly%  

and lλ%  are the l-th component of the KL transformed noisy 

and ideal sinogram, respectively.  ∑%  is the diagonal variance 
matrix.  Based on our previous analyses [7, 8], the calibrated 
projection data of low-dose CT follow approximately a 
Gaussian distribution with an associated relationship between 
the sample mean and variance which can be described as: 

2
0exp( )i i iNσ λ=                                 (3) 

where 0iN  denotes the fixed photon number. 

In the second term, ld  is the eigenvalue and α  is the 

parameter which controls the penalty R  which takes the 
quadratic form as used in [8]: 
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where index i runs over all projection views in the sinogram 
spaces, jN  represents the first order nearest neighbors of the 

i-th pixel in the KL transformed 2D component.  The weight 

,i mw  is determined by the magnitude of difference between 

neighbors and the concerned.  In this study, it is simplified by 
setting 1 for the four neighbors along vertical and horizontal 
direction, 0 for others. 

The implementation of estimating lλ%  from ly%  could be 
achieved by an iterative Gauss-Seidel (GS) algorithm [7, 11], 
as: 
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where n represents the iterative number.  1
iN  denotes the 

upper and left neighbors of iλ% , and 2
iN  denotes the right and 

lower neighbors of iλ% . 

The implementation procedure of the proposed KL-PWLS-
2D filtering scheme for low-dose CBCT sinograms is 
summarized as following: 

1. For any chosen i-th view from the calibrated projection 
data, the (i-1)-th and (i+1)-th views of the projection are 
selected for KL transform. 

2. Calculate the KL transform matrix A and apply KL 
transform on the three neighboring views. 

3. In the KL domain, perform PWLS minimization on each 
KL component. 

4. Apply inverse KL transform on the processed KL 
components to estimate the ideal sinogram for the 
chosen i-th view. 

5. Run i from the first or beginning view until all the 
sinogram views are restored. 

The CBCT reconstructed images is then obtained by using 
the Feldkamp-Davis-Kress (FDK) algorithm [14]. 

III.RESULTS 
An air scan was performed to estimate the incident intensity 
over the field of view (FOV) at a specific mAs level.  Figure 
1 shows the incident X-ray intensity with the tube current 10 
mA and duration of pulse 10 ms.  The incident X-ray intensity 
can then be used for estimation of the sinogram data variance. 
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Fig. 1. Incident X-ray intensities across the field of view with 10 mA tube 
current and 10 ms pulse time. 
 

We tested the proposed algorithm on the CatPhan phantom, 
see Figure 2.  For comparison purposes, the reconstruction of 
80 mA tube current is included.  For display purpose, one 
slice was selected containing several strips with different sizes 
and contrasts.  It can be observed that the reconstructed 
images of 10 mA data from the proposed KL-PWLS-2D show 
noticeable noise suppression and resolution preservation over 
the fully 3D PWLS-3D smoothing method without KL 
transform.  The result of KL-PWLS-2D for 10 mA data is 
comparable to the output from a commercial CT scanner with 
the 80 mA protocol in terms of the detectability of the strips. 
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(a)                                                      (b) 

   
(c)                                                     (d) 

 
Fig. 2.  Reconstructed transverse slice of the 3D CatPhan phantom:  (a) from 
projection images acquired with 10 mA tube current, (b) from projection 
images acquired with 80 mA tube current, (c) from PWLS smoothed sinogram 
without KL transform using a 3D MRF penalty, (d). from KL-PWLS-2D 
filtered sinogram. 

 

To quantitatively evaluate the effectiveness of the proposed 
KL-PWLS-2D sinogram smoothing algorithm, the noise-
resolution tradeoff of the presented approach and the PWLS-
3D were computed.  The evaluation method used is similar to 
that used in [11].  A selected transverse slice contain small 
point-like circles was selected for this study, as shown in 
Figure 3(a). 

The reconstructed image resolution was analyzed by the 
edge spread function (ESF) along the central vertical profile 
of the disk pointed by an solid arrow in Figure 3(a).  The 
comparison of profiles through the kernel is presented in 
Figure 3(b).  A Gaussian kernel with standard deviation equal 
toσ is used to fit the profiles to an error function.  Then the 
image resolution could be reflected by full-width at half-
maximum (FWHM) which equal to 2.35σ , see Figure 3(c). 

We also calculated the contrast-to-ratio (CNR) at different 
ROI in the images shown in Figure 3(a).  The CNR is defined 
as: 
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where sμ  is the mean value of the signal and bμ  is the mean 
value of the background.  Four selected disks (indicated by 
the dashed line and hollow arrows) with different intensities 
were chosen to calculate CNRs.  Table 1 lists the CNRs of 
these four ROIs.  It can be observed that the CNR obtained by 
the proposed KL-PWLS-2D achieves better performance than 
PWLS-3D and is comparable to that of the image acquired 
with 80 mA protocol. 

Table 1. CNRs of selected ROIs in Figure 3(a) 

 ROI1 ROI2 ROI3 ROI4 
80 mA 4.81 1.25 7.38 1.77 
10 mA 1.77 0.49 2.73 0.62 
PWLS-3D 4.25 0.90 5.85 1.36 
KL-PWLS-2D 4.33 1.11 6.23 1.54 
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Fig. 3. (a) Phantom used for the evaluation studies. (b). Vertical profiles 
through the center of pointed disk in (a).  (c). Noise-resolution tradeoff curves 
for the presented approaches and PWLS-3D method. 

IV. CONCLUSION 
In this study, we presented a KL domain PWLS scheme to 
treat noise in low-dose CBCT sinogram.  Other than modeling 
the noise properties of the first and second statistical moments 
of the low-dose CT sinogram by sample mean and variance, 
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ROI2 

ROI3 

ROI4 
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we obtained the property parameters directly by using 
commercial CT scanner through in-air scan.  The KL 
transform was first applied along the neighboring views in the 
3D sinogram to consider the continuous sampling correlative 
information among the rotated sampling.  Then the PWLS 
objective function was minimized adaptively for each 2D 
principal component to estimate the ideal projection at each 
specified corresponding view.  The image reconstruction from 
smoothed sinogram could be performed by a cone-beam 
reconstruction algorithm. 

Gain has been observed by an experimental phantom study.  
By the profile through selected ROIs from the reconstructed 
results of the presented KL-PWLS-2D and the reference 
PWLS-3D, it is observed that the KL-PWLS-2D has a better 
performance than the reference.  The noise-resolution tradeoff 
study and CNR of selected ROI further showed the 
effectiveness of the presented method.  The differences 
should attribute to the KL transform for the consideration of 
the signal correlation among neighboring views of the CBCT 
while in the PWLS-3D method these correlations are 
considered by the penalty terms in the objective function.  It is 
also worthwhile to point out that the computation burden can 
be greatly decreased by the proposed algorithm with 
comparison to the 3D penalty modeling approach.  It costs 
only less than 10 minutes to perform the sinogram restoration 
with size 240 924 634× ×  on a PC with 2.33 GHz and 3 GB 
memory. 
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Confidence Intervals for ROC-based Image Quality
Assessment inCT
Adam Wunderlich and Fréd́eric Noo

Abstract—We introduce new confidence interval estimators
for ROC curves and for ROC summary measures that may be
used to characterize observer performance in task-based image
quality studies involving binary classification of two classes of
images. Our new estimators require continuous-valued observer
ratings and rely on two assumptions: (i) the observer ratings are
normally distributed for each class of images, and (ii) the variance
of the observer ratings is the same for each class of images. These
assumptions apply, for example, to ratings produced by linear
model observers applied to low-contrast lesion detection tasks.
Importantly, the new estimators yield confidence intervals with
exact coverage probabilities and they may be easily calculated
using a computer. The utility of our new interval estimators is
illustrated through an image quality evaluation example using
real x-ray computed tomography images.

I. I NTRODUCTION

Task-based assessments of image quality often involve
binary classification. For example, studies of medical image
quality frequently evaluate a lesion detection task in which
an observer attempts to discriminate between two classes of
images: those images that contain a lesion and those that
do not. Observer performance for a binary classification task
can be expressed using a receiver operating characteristic
(ROC) curve, which plots the true positive fraction (TFP) as
a function of false positive fraction (FPF) [1]. For purposes
of simplification, the whole ROC curve is often reduced to a
single number, called an ROC summary measure [1], [2]. In
practice, ROC curves and ROC summary measures must be
estimated from observer rating data obtained experimentally.
Consequently, they suffer from statistical variability that must
be characterized in order to make inferences about observer
performance.

One way that estimator variability may be summarized
is through the use of confidence intervals. As opposed to
point estimates, confidence intervals provide a probabilistic
guarantee of covering the parameter of interest [3]. Moreover,
as observed in [4], a virtue of confidence intervals is that
they convey more information than hypothesis testing (to-
gether with p-values) in two ways. First, confidence intervals
communicate the amount of statistical precision involved in
an experiment. Second, they communicate the relative size
of an experimental effect, i.e., they show how significant
experimentally-observed differences are in terms of their mag-
nitude. In this work, we present fully parametric estimators
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that yield confidence intervals for ROC summary measures
and confidence bands for ROC curves. Our new estimators
are designed for continuous-valued observer ratings under the
dual assumptions that (i) the observer ratings are normally
distributed for each class of images, and (ii) the variance of
the observer ratings is the same for each class of images.

Although the aforementioned assumptions appear to be
restrictive, they are generally satisfied for CT image evaluation
tasks involving detection of small, low-contrast lesions with
linear computerized model observers. Indeed, because most
linear model observers compute each observer rating as a
linear combination of a large number of image pixel values, the
central limit theorem [3] implies that the ratings will tend to
be normally-distributed for each class of images. Furthermore,
because the absence or presence of a small, low-contrast lesion
will have only a small impact on the image covariance matrix,
the variance of ratings produced by linear model observers will
change little from one class of images to the other. Thus, the
variance of the rating data may be assumed to be the same for
each class of images.

Previous work that examined confidence intervals with ap-
plication to ROC analysis has primarily focused on estimation
of the area under the ROC curve (AUC), a widely-used
summary measure; see, e.g., [5], [6] for overviews of the
literature on this topic. Also, confidence bands for the entire
ROC curve have been investigated by [7], [8]. A drawback
of the previously investigated interval and band estimators is
a reliance on either asymptotic approximations or resampling
techniques; these approaches result in imprecise knowledge
of the coverage probabilities for the resulting confidence inter-
vals. By contrast, the coverage probabilities for the confidence
intervals that we propose in this work are known exactly.

After reviewing summary measures for ROC curves, we
present our new confidence interval estimators. The remainder
of the paper illustrates the utility of these estimators in the
context of image quality evaluation with real x-ray CT images.

II. ROC FIGURES OFMERIT

We assume that the reader is familiar with the normal and
noncentralt probability distributions. If a random variableX
is normally distributed with meanµ and varianceσ2, then we
write X ∼ N (µ, σ2). Similarly, if X follows a non-central
t distribution with ν degrees of freedom and non-centrality
parameterδ, it is written asX ∼ t′ν(δ). For the standard
normal distribution,N (0, 1), we employ the usual notation
Φ(x) andΦ−1(p) for the cumulative distribution function (cdf)
and the inverse cdf, respectively.

Suppose that an observer (a.k.a. classifier) is tasked with
the discrimination of two classes of noisy images, denoted as
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class 1 and class 2. In medical applications, these two classes
may correspondto images of non-diseased and diseased tis-
sues, respectively. A simple model is usually used for the
observer’s decision process. Namely, for each image, suppose
that the observer generates a continuous-valued rating statistic,
y, with larger values ofy indicating a preference for class 2
and smaller values ofy indicating a preference for class 1. To
make its decision, the observer compares the rating statistic,
y, to a threshold,c. If y > c, then the observer concludes that
the image belongs to class 2, otherwise, the observer decides
that the image belongs to class 1 [1], [2].

We assume thaty ∼ N (µ1, σ
2) for images from class 1

andy ∼ N (µ2, σ
2) for images from class 2, withµ2 > µ1. In

this setting, we investigate the figures of merit listed below;
see [1] and [2] for more details on these metrics.

• observer signal-to-noise ratio (SNR):

SNR=
µ2 − µ1

σ
(1)

• area underthe ROC curve (AUC):

AUC = Φ(SNR/
√

2 ) (2)

• true positive fraction (TPF):

TPF(FPF) = Φ(SNR+ Φ−1(FPF)) (3)

where the false positive fraction (FPF) is a fixed value.

• partial area under the ROC curve (pAUC):

pAUC(FPF0, FPF1) =

∫ FPF1

FPF0

TPF(FPF)d(FPF) (4)

where the limits FPF0 and FPF1 are fixed.

III. C ONSTRUCTION OFINTERVAL ESTIMATORS

Suppose that an observer ratesn1 images from class 1 and
n2 images from class 2. Denote these ratings for classes 1
and 2 asy(1)

1 , y
(1)

2 , . . . , y
(1)
n1

and y
(2)

1 , y
(2)

2 , . . . , y
(2)
n2

, respec-
tively. We wish to estimate confidence intervals for summary
measures of observer performance from this finite sample
of rating data. In this section, we introduce our estimators
assuming thaty(1)

i ∼ N (µ1, σ
2) and y

(2)

j ∼ N (µ2, σ
2), for

i = 1, 2, . . . , n1, j = 1, 2, . . . , n2, whereµ1, µ2, andσ2 are
unknown. Each of our interval estimators is based on a point
estimator for SNR, which is introduced first. For the sake of
brevity, we omit all proofs.

A. Point Estimation of SNR

Let the sample mean and the sample variance for classj be
yj = (1/nj)

∑nj

i=1
y
(j)

i and s2
j = [1/(nj − 1)]

∑nj

i=1
(y

(j)

i −

yj)
2, respectively. Also, define a pooled estimator forσ2 as

s2 = [1/(n1 +n2−2)]
(

(n1 − 1)s2
1 + (n2 − 1)s2

2

)

. With these
definitions in place, we define an estimator of SNR as

̂SNR= γ (y2 − y1)/s, (5)

with

γ =

√

2π/(n1 + n2 − 2)

B((n1 + n2 − 3)/2, 1/2)
, (6)

whereB(x, y) is the Euler beta function. The multiplicative
factor γ is chosen to make the estimator unbiased. The
following theorem characterizes the sampling distribution of
̂SNR.

Theorem 1. Suppose that̂SNR is computed from independent
samplesy(1)

i ∼ N (µ1, σ
2) and y

(2)

j ∼ N (µ2, σ
2), wherei =

1, 2, . . . , n1 and j = 1, 2, . . . , n2. Then

η ̂SNR∼ t′ν(δ),

where

η =
1

γ

√

n1n2

n1 + n2

, ν = n1 + n2 − 2,

and

δ = SNR

√

(n1n2)

(n1 + n2)
.

The expression for the mean of a noncentralt deviate [9]
together with the above theorem may be used to show that
̂SNR is unbiased.

It turns out that ̂SNR is the uniformly minimum variance
unbiased (UMVU) estimator of SNR. This result is stated
precisely in the next theorem.

Theorem 2. Suppose that̂SNR is computed from independent
samplesy(1)

i ∼ N (µ1, σ
2) and y

(2)

j ∼ N (µ2, σ
2), wherei =

1, 2, . . . , n1 and j = 1, 2, . . . , n2. Then ̂SNR is the unique
UMVU estimator ofSNR.

B. Confidence Interval Estimation

Given a random variable,X, with a distribution depending
on a parameter,θ, one may define a random interval estimate
[θL(X), θU (X)] for θ. This interval is said to be a1 − α
confidence interval forθ if P (θ ∈ [θL(X), θU (X)]) = 1− α
for all values ofθ [10].

We find confidence intervals for the ROC figures of merit
summarized in section II using the next two lemmas. The
first lemma enables calculation of confidence intervals for the
noncentrality parameter of a noncentralt distribution. It may
be proved using [3, Theorem 9.2.12, p. 432] together with a
property of the noncentralt cdf.

Lemma 1. Suppose thatT ∼ t′ν(δ) and that the cdf forT is
FT (t ; ν, δ). Also, letα1 and α2 be fixed, nonnegative values
that satisfyα1 + α2 = α with 0 < α < 1. Then for eacht ∈
(−∞,∞), there exist unique valuesδL(t) andδU (t) satisfying

FT (t ; ν, δU (t)) = α1 and FT (t ; ν, δL(t)) = 1 − α2.

that are the lower and upper bounds, respectively, of a1− α
confidence interval forδ.

Above, if α1 = 0, then δU (t) = ∞ and if α2 = 0, then
δL(t) = −∞. In either of these cases, the confidence interval
defined in Lemma 1 is said to be one-sided. Otherwise, the
interval is said to be two-sided [10]. Although the noncentralt
cdf has a relatively complicated analytical form, the equations
in Lemma 1 may be solved iteratively forδL(t) andδU (t).
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The second lemma is a well-known property of confidence
intervalsthat, as observed in [4], is rarely formalized.

Lemma 2. Let g(θ) be a continuous, strictly increasing
function ofθ. If [θL, θU ] is a 1−α confidence interval forθ,
then [g(θL), g(θU )] is a 1 − α confidence interval forg(θ).

Since, by Theorem 1,̂SNR is a strictly increasing transfor-
mation of a noncentralt random variable with a noncentrality
parameter that is a constant multiple of SNR, Lemmas 1 and
2 suggest a method to calculate confidence intervals for SNR.
Furthermore, the formulae in section II indicate that AUC,
TPF, and pAUC are strictly increasing transformations of SNR.
Hence, Lemma 2 may be used together with these formulae
to compute confidence intervals for AUC, TPF, and pAUC
from any confidence interval for SNR. To summarize, exact
confidence intervals for the ROC figures of merit in section
II, may be calculated by performing the following steps:

(1) Compute a value of̂SNR from the observer ratings.
(2) Multiply the value of ̂SNR from step (1) byη as defined

in Theorem 1 to get a noncentralt deviate.
(3) Apply Lemma 1 to compute a1 − α confidence interval

for the noncentrality parameter,δ.
(4) Use the formula relatingδ to SNR in Theorem 1 together

with Lemma 2 to transform the confidence interval forδ
into a confidence interval for SNR.

(5) Compute confidence intervals for AUC, TPF, and pAUC
from the confidence interval for SNR by using Lemma 2
and the formulae in section II.

A confidence band for the entire ROC curve may be found
from a confidence interval for SNR in the sense of the
next theorem. Below, we use the notation TPF(FPF; SNR)
to emphasize that the TPF depends on SNR in addition to
FPF. We denote the collection of points on the ROC curve as
ΩROC =

{

(FPF,TPF) : FPF∈ [0, 1]
}

.

Theorem 3. Suppose thaty ∼ N (µ1, σ
2) for images from

class 1 andy ∼ N (µ2, σ
2) for images from class 2. Let

[SNRL, SNRU ] be a1− α confidence interval forSNR, and
define the set

̂ΩROC =
{

(FPF, T) : FPF∈ [0, 1] and T ∈ I

}

where

I = [TPF(FPF; SNRL), TPF(FPF; SNRU )].

Then ̂ΩROC is a 1 − α confidence band for the ROC curve in
the sense that, for any value ofSNR, ΩROC is contained in
̂ΩROC with probability 1− α, i.e., P (ΩROC ⊂

̂ΩROC) = 1− α.

Observe that the1−α confidence band defined in the above
theorem is equivalent to the union over all FPF values of1−α
confidence intervals for TPF.

IV. A PPLICATION TO TASK-BASED IMAGE QUALITY

EVALUATION

Now, we present an example of how our estimators can be
used for task-based image quality evaluation in CT.

Fig. 1. Mean images of the QRM phantom displayed with a grayscale
windowof [−200, 600] HU. Whole phantom (left) and reconstruction focused
on the heart insert (right) with regions of interest marked with white boxes.
ROI-1a and ROI-1b contain no lesion. ROI-2a and ROI-2b contain a low-
contrast, and a high-contrast lesion, respectively.

A. Data Acquisition, Image Reconstruction, Task, and Ob-
server

A SiemensSOMATOM Sensation64 CT scanner was used
to repeatedly scan a thorax phantom186 times over a circular
source trajectory to collect fan-beam data sets. The x-ray tube
settings were25 mAs and 120 kVp, and the data acquisition
was performed with no tube current modulation to accentuate
noise correlation in the image. The phantom consisted of
a torso constructed by QRM (M̈ohrendorf, Germany) [11]
together with two different water bottles attached to the sides
to simulate arms. A mean image of the whole phantom
estimated from186 reconstructions is shown in Figure 1 (left).

The CT data was reconstructed with our implementation
of the classical filtered backprojection (FBP) algorithm for
direct reconstruction from either short-scan or full-scan fan-
beam data [12]. The reconstruction was performed on a grid
of 550×550 square pixels of size0.02 cm×0.02 cm that was
centered on the heart insert, as shown in Figure 1 (right).

For the image evaluation task, we considered a signal-
known-exactly/background-known-exactly (SKE/BKE) lesion
detection task [1]. To implement this task in various situations,
we identified four regions of interest (ROI) in the heart insert:
two regions without lesions, labeled as ROI-1a and ROI-1b,
and two regions with a lesion at their center, labeled as ROI-
2a and ROI-2b. The lesion diameter is 1 mm for both ROI-2a
and ROI-2b, but the contrast varies from one ROI to the other,
namely, the contrast is 210 HU for ROI-2a and 455 HU for
ROI-2b. In each case, the background value is 40 HU. Each
ROI when viewed as an image consists of50 × 50 pixels.

We used the ROIs to investigate two tasks: (i) the task of
detecting the 210-HU lesion in ROI-2a, and (ii) the task of
detecting the 455-HU lesion in ROI-2b. In either case, the
images with the lesion are referred to as class-2 images, and
the images without a lesion as class-1 images. Thus, images
of ROI-2a are the class-2 images for the first task, and images
of ROI-2b are the class-2 images for the second task. On the
other hand, images of ROI 1-a and 1-b define class-1 images
for both tasks. For each task, any given CT data set yields one
image of class-2, and also two images of class-1 that may or
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may not be both used for the analysis.
Ideally, the class-1 images would cover the same spatial

region as the class-2 images. Here, the phantom does not
offer such a flexibility. To circumvent the issue, we rely
on knowledge that the noise properties vary slowly in the
reconstruction over the spatial scale of interest. That is, we
assume that the noise properties are the same in all four ROIs.
Furthermore, we assume that the images of the four ROIs
obtained from one given data set are independent. This is
justified by a previous study which indicated that correlations
between image pixels are negligible over the distance (1 to 2
cm) that separates the ROIs [12].

For the observer, we used a trained channelized Hotelling
observer (CHO), which is a popular type of linear model
observer; for details, see [1]. Our CHO was implemented
with three difference of Gaussian (DOG) channels using the
parameters given in [13] for sparse DOG channels.

Below, we present results for two case studies. The first
study considers the problem of evaluating the ROC parameters
for detection of the low-contrast lesion with a short-scan
reconstruction. For this study, the CT data sets were split
into two groups of 93 elements each. The first group was
used for training the observer, i.e., computing the template of
the observer, while the second group was used for testing the
observer, i.e., evaluating the ROC parameters of the observer.
The training used images of ROI-1a for class 1 and of ROI-2a
for class 2; the images of ROI-1b were discarded. The testing
was performed under two scenarios: (i) using only ROI-1a for
class 1, and (ii) using both ROI-1a and ROI-1b for class 1.

The second case study compares the full-scan and short-
scan reconstruction strategies in terms of how they impact
the detection of each lesion. For this study, the 186 CT data
sets were split into two groups of 93 elements each, with the
first group being used for full-scan reconstruction, and the
second group for short-scan reconstruction. Such a separation
ensured statistical independence between the short-scan and
the full-scan ROC results. Each group of 93 CT data sets was
further split into 46 elements used for training and 47 elements
used for testing. As in the first case study, the training only
used images of ROI-1a for class 1. However, the testing was
performed under a single scenario, namely using both ROI-1a
and ROI-1b for class 1.

B. First Case Study

Table 1 contains the95% confidence intervals that resulted
for SNR, AUC, and pAUC under each scenario. The intervals
correspond to scenario 1:n1 = 93, n2 = 93, and scenario
2: n1 = 186, n2 = 93 with α1 = α2 = 0.025, FPF0 = 0,
and FPF1 = 0.2. In addition, Figure 2 displays estimated95%
confidence bands for the entire ROC curve.

Examining both Table 1 and Figure 2, we see that a clear
decrease in the size of each confidence interval and in the
ROC confidence band was gained by increasing the number
of class 1 images.

C. Second Case Study

Tables 2 and 3 give the95% confidence intervals that
resulted for SNR, AUC, and pAUC for the low-contrast

Scenario 1 Scenario 2
SNR [1.0625, 1.7031] [1.1213, 1.6707]
AUC [0.7738, 0.8858] [0.7861, 0.8813]

pAUC(0, 0.2) [0.0770, 0.1229] [0.0811, 0.1206]

TABLE I
95% CONFIDENCE INTERVALS IN THE FIRST CASE STUDY
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Fig. 2. Comparison of95% confidencebands for an ROC curve estimated
with different numbers of class 1 ratings in the first case study. The bands
correspond to scenario 1:n1 = 93, n2 = 93 (solid lines) and scenario 2:
n1 = 186, n2 = 93 (dashed lines).

Full-scan Short-scan
SNR [1.6433, 2.4962] [1.0008, 1.7734]
AUC [0.8774, 0.9612] [0.7604, 0.8951]

pAUC(0, 0.2) [0.1187, 0.1682] [0.0726, 0.1277]

TABLE II
95% CONFIDENCE INTERVALS ESTIMATED FOR THE LOW-CONTRAST

LESION IN THE SECOND CASE STUDY

Full-scan Short-scan
SNR [3.0605, 4.1607] [1.9573, 2.8578]
AUC [0.9848, 0.9984] [0.9168, 0.9783]

pAUC(0, 0.2) [0.1863, 0.1984] [0.1397, 0.1811]

TABLE III
95% CONFIDENCE INTERVALS ESTIMATED FOR THE HIGH-CONTRAST

LESION IN THE SECOND CASE STUDY
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Fig. 3. 95% confidence bandsfor the ROC curves corresponding to full-scan
and short-scan reconstructions of low-contrast (left) and high-contrast (right)
lesions

(210 HU) and the high-contrast (455 HU) lesions, respectively.
The intervals were estimated fromn1 = 94 class-1 ratings and
n2 = 47 class-2 ratings withα1 = α2 = 0.025, FPF0 = 0, and
FPF1 = 0.2. In addition, the estimated95% confidence bands
for the entire ROC curve under each lesion-contrast scenario
are displayed in Figure 3.

To compare the short-scan and full-scan results against
each other for a given lesion, recall that the study was
designed so that there is no statistical dependence between
the 95% confidence interval (band) estimates obtained for the
two reconstruction strategies. This feature greatly simplifies

116 The first international conference on image formation in X-ray computed tomography



1 2 3 4
1

1.5

2

2.5

3

3.5

4

full−scan SNR

sh
or

t−
sc

an
 S

N
R

1 2 3 4
1

1.5

2

2.5

3

3.5

4

full−scan SNR

sh
or

t−
sc

an
 S

N
R

Fig. 4. 90.25% confidence regionsfor (SNRfs, SNRss) in the high-contrast
(left) and low-contrast (right) lesion cases

the analysis as there is no need to worry about correlations
between these estimates. Suppose, for example, that we wish
to compare the SNR values obtained for the two reconstruction
strategies. Let SNRfs and SNRss be these two values, and let
[Lfs, Ufs] and [Lss, Uss] be their 95% confidence intervals.
Then, by the rules governing probabilities of independent
events, we can claim a0.952 = 0.9025 confidence that the
region[Lfs, Ufs]×[Lss, Uss] covers the pair(SNRfs, SNRss);
see Figure 4. Both the size and the position of the confidence
region determine how the results should be interpreted. First,
a smaller region covering a given pair of SNR values indicates
a higher statistical precision. Second, if the confidence region
does not intersect the line at 45 degrees in the plane of possible
values for(SNRfs, SNRss), then there is evidence that the re-
construction strategies yield dissimilar detection performance.
Consequently, different conclusions are to be drawn between
the low-contrast and the high-contrast lesion cases. For the
high-contrast lesion, because the SNR confidence intervals do
not overlap, the SNR confidence region does not intersect the
45 degree line as shown in Figure 4 (left), and we can reject
the hypothesis that SNRfs = SNRss with a confidence level
of 0.9025. Likewise, the same conclusion can be made for
the other figures of merit. Conversely, for the low-contrast
lesion, as shown in Figure 4 (right), the SNR confidence
region intersects the 45 degree line, and we can only state
that there is not enough evidence at the0.9025 level to reject
the hypothesis that SNRfs = SNRss. In either case above, it
should be observed that the conclusions were drawn with a
fairly poor statistical precision, due to the small number of
images used to test the observer.

V. D ISCUSSION ANDCONCLUSIONS

In this work, we proposed confidence interval estimators
that may be used in ROC evaluations of task-based image
quality studies. A strength of the new interval estimators is that
they have exactly-known coverage probabilities. Our approach
relies on two assumptions: (i) the observer ratings are normally
distributed for each class of images, and (ii) the variance of the
observer ratings is the same for each class of images. These
assumptions apply, for example, to ratings produced by linear
model observers applied to lesion detection tasks involving
small, low-contrast lesions.

We demonstrated the use of the new confidence interval
estimators with an example involving a trained CHO and a
SKE/BKE lesion detection task with real x-ray CT images.

In the context of this example, we have seen that increas-
ing n1 relative to n2, which is relatively easy to do with
CT images, can be used to reduce statistical variability. It
should be emphasized that our choices for the task and for
the observer are not necessarily optimal for image quality
assessment in CT. Investigation of more sophisticated tasks
and observers suitable for CT images is an important topic
for future research.

Much previous work dealing with ROC estimation has
focused on estimation of the so-called binormal parameters,
a and b, which may be used to parameterize ROC curves;
see, e.g., [2] for an overview. Our new confidence interval
estimators may be understood in this context. Specifically,
under our assumptions for the observer ratings,a = SNR and
b = 1. Thus, the results in this paper correspond to a setting
in which the ROC curve is parameterized by only SNR.
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Design Differences between a Standard CT-Scanner and a C-arm Based 
Cone-beam CT-Scanner 

Michael D. Silver, Ph.D. 
Vice-President Research 

Toshiba Medical Research Institute USA, Inc., Vernon Hills, Illinois,USA 
 

In my talk I’ll compare both the more obvious differences between standard CT-scanners and C-
arm x-ray imaging systems with a CT-option and differences that might not be widely 
appreciated. Let’s start with the definitions of the two different systems. What is a “standard CT-
scanner?” I could use the term MSCT for multi-slice CT but we now have “standard” systems 
with nearly as many detector rows and as wide a cone-angle as the C-arm based cone-beam 
CT-scanners, which are often designated by CBCT. This is becoming a distinction without 
descriptive value. However, for ease of a short descriptor, I’ll use MSCT for “standard” CT-
scanners and CBCT for C-arm based imagers. 
  
What is a “standard” CT-scanner? The IEC in the CT-safety standard IEC60601-44-ed3 limits its 
coverage to “CT scanners intended to be used for both head and body characterized by an 
enclosure of the X-ray source(s) and imaging detector(s) in a common protective cover in the 
shape of a toroid.” Thus the distinction with CBCT is CBCT’s lack of “a common protective cover 
in the shape of a toroid.” This obvious mechanical difference leads to more than a factor of ten 
difference in rotation speed. This and resolution requirements leads to different choices for the 
detector and that has subsequent consequences for data corrections and image quality. A more 
subtle difference related to the mechanical design is the choice in backprojection formulae.  
 
Another way to characterize the two systems is by clinical application. We usually say that the 
standard CT-scanner is a diagnostic device. CBCT is not a diagnostic device; rather, it is mostly 
used for guidance during intervention. We’ll list the differences in clinical applications and 
discuss support for advanced applications.  
 
In the commercial environment the two imaging systems have very different cost targets, thus 
affecting design choices. It is likely that the developments of the two systems are under two 
different engineering departments. They may have availability to different levels of funding, 
engineering resources, and design restrictions pertaining to legacy software and hardware in 
previous and current generations of these imaging systems.  
 
MSCT is explicitly designed for CT while the interventional scanner is designed for fluoroscopy 
and radiology with CT as an add-on option. How does doing CT on-the-cheap stack up with 
conventional CT? Or do their different applications make this a non-issue? 
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ABSTRACT 
 
Cardiovascular diseases are pervasive with high mortality 
and morbidity at tremendous social and healthcare costs. 
There are urgent needs for significantly higher fidelity 
cardiac CT with substantially lower radiation dose, which is 
currently not possible because of technical limitations. 
Although cardiac CT technology has improved significantly 
from 16 to 320 detector rows and from single to dual 
source, there remain technical challenges in terms of 
temporal resolution, spatial resolution, radiation dose, and 
so on, which motivates us to advance the state-of-the-art in 
cardiac CT dramatically and define the next generation 
cardiac CT system. Here we propose an evaluation scheme 
to single out the best candidate from several novel cardiac 
CT architectures with novel sources and scanning 
trajectories. 

Index Terms— Cardiac CT, Evaluation scheme, 
Architecture innovation, Algorithm development, 
Performance evaluation. 

 
1. INTRODUCTION 

 
Worldwide there are growing concerns on radiation induced 
genetic, cancerous and other diseases [1]. Cardiac CT is 
considered as a radiation-intensive procedure, yet becoming 

more and more common. Despite the impressive 
advancement in CT technology, there are critical and 
immediate needs for cardiac CT with significantly better 
image quality at lower radiation dose. This motivates us to 
advance the state-of-the-art in cardiac CT dramatically and 
define the next generation cardiac CT system. 
       Until recently, all manufacturers offered products with 
up to 4cm of longitudinal coverage, 330ms rotation time 
and about 8lp/cm (5% MTF cutoff) native spatial resolution. 
Because 50ms temporal resolution and 16cm coverage are 
very aggressive performance goals, all architectures in 
laboratory that have been proposed to achieve this level of 
performance come with severe tradeoffs in terms of cone-
beam artifacts, scatter, and complexity. To define the state-
of-the-art of cardiac CT, we set 16cm nominal coverage, 
50ms nominal temporal resolution, 20lp/cm nominal spatial 
resolution, 10HU noise level, and 5mSv effective dose as 
the main technical target.  
     In recent years, a number of new CT technologies have 
been developed, including distributed X-ray sources, field 
emitters based on carbon nano tubes, photon-counting 
detectors, fast CT gantries with high-performance bearings, 
interior ROI reconstruction, etc. To single out the best 
candidate from all the available novel cardiac CT 
architectures, here we propose an evaluation scheme as 

 
Figure 1.  Process for selection of next generation cardiac CT architectures. 

120 The first international conference on image formation in X-ray computed tomography



summarized in Fig. 1.  
           

2. ARCHITECTURE INNOVATION 
 

2.1. Architecture Definition 
The overall goal of the architecture definition is to design, 
analyze, refine and identify superior cardiac CT 
architectures. In this first phase, we will define a number of 
candidate topologies: (1) baseline architectures, (2) saddle-
curve scanning architectures, (3) triple-source architectures, 
(4) arc-source architectures, (5) nanotube-based 
architectures, (6) interior imaging schemes, and (7) 
instant/ultrafast CT schemes. We will also apply the TRIZ-
methodology, a model-based technology for generating 
innovative solutions, to find any other promising 
architecture. These architectures will include flux 
optimization techniques such as dynamic source 
collimation, aggressive bowtie, virtual bowtie, dynamic 
bowtie, and advanced mA modulation [2]. For each of the 
architectures, we will develop a high-level conceptual 
design targeting cardiac CT with 16cm nominal coverage, 
50ms nominal temporal resolution, and 20lp/cm nominal 
spatial resolution. This high-level design will include 
geometrically accurate drawings of each architecture and 
component selection.  
Baseline Architectures. This includes all commercially 
available CT architectures and will serve as the baseline for 
our purpose. Most commercial CT scanners use the third-
generation geometry. To meet the nominal coverage, this 
system will require a very large detector, and cone-beam 
artifacts will be a major challenge. We will investigate a 
triple-source CT architecture explained below. The best 
temporal resolution today is achieved with the EBCT 
scanner, which deflects an electron-beam to produce x-rays 
along semi-circular target rings. This architecture is fairly 
complex and limited in source intensity, but it provides 
extremely fast imaging capability. We will investigate a 
newer approach based on discrete electron emitters as 
explained under stationary architectures below. 

Saddle-curve Scanning Architectures. Line sources with 
multiple longitudinally offset focal spots were proposed 
several years ago for CT [3]. They are a natural solution for 
achieving large volumetric coverage with limited cone-
beam artifacts. If the number of focal spots is large they can 
even be used to implement a saddle trajectory [4-5]. In 
2007, we invented a composite-circling scanning mode (Fig. 
2) and associated cone-beam reconstruction methods to 
solve the quasi-short object problem [6]. This approach to 
cone-beam CT may have significant advantages in artifact 
reduction over existing cardiac CT scanners and in scatter 
rejection over the standard saddle-curve scheme, 
respectively. 

 
Figure 2. Compositing-circling mode. In such a CT system, the 
scanning trajectory is a composition of two circular motions: 
while an x-ray focal spot is rotated on a plane facing an object 
to be reconstructed, the x-ray source is also rotated around the 
object on the gantry plane.  

Triple-source Architecture. The Siemens dual-source 
scanner has received a major attention in the field. A natural 
extension of the dual-source system is a triple-source cone-
beam CT (CBCT) scanner. A first advantage of the triple 
source configuration is obviously the further improvement 
in temporal resolution. In addition, this architecture offers 
specific advantages in cone-beam reconstruction. 
Arc-source Architectures. A different concept with a 
potential for cardiac CT is based on an arc source, or a 
source with multiple azimuthally offset focal spots. In one 
design, each focal spot irradiates the same cardiac ROI 
alternatively. Since the spots are azimuthally offset, they 
can acquire data over a large view range in a limited amount 
of time (~ milliseconds). To acquire sufficient data for a 
half-scan reconstruction several datasets need to be 
combined at different angular intervals, such as used with 
multi-sector reconstruction. This architecture can potentially 
yield greatly improved temporal resolution, but may suffer 
from increased scatter and limited flux.  
Nanotube-based Architectures. Recently, Dr. Otto Zhou’s 
group reported the development of a micro-CT scanner 
based on a carbon nanotube (CNT) based x-ray source 
being rotated around a stationary mouse bed [7]. Their 
system can provide high temporal and spatial resolutions in 
small animal imaging. We believe that the CNT-based 
source technology can be extended for clinical cardiac CT 
in the future. 
Interior Imaging Schemes. The simple way to implement 
interior CT is to collimate the x-ray beam to a reduced FOV, 
using a collimator similar to the ones used today. This 
would require accurately centering the cardiac region-of-
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interest. Several concepts have been proposed by us and 
others for aggressive and dynamic bowtie filters, which 
enable imaging protocols that target a central ROI.  
Instant/Ultrafast CT Schemes. Similar to an EBCT 
scanner, an instant/ultrafast CT scanner is highly optimized 
for temporal resolution. We very recently introduced a 
specific concept for cardiac instant/ultrafast CT [8], shown 
schematically in Fig. 3. Interior tomography is particularly 
desirable for this scheme. Assuming a cardiac FOV of about 
10cm, a magnification of two, and a detector width of 20cm, 
an architecture with several tens of source-detector pairs is 
conceivable. Challenges with scattered radiation can be 
addressed by optimizing the detector-patient air-gap and the 
number of sources that are fired simultaneously. 

 
Figure 3. Instant tomography scheme as an extreme of the 
multi-source CT concept, combined with compressive sampling 
and interior tomography theories. 

2.2. Detailed Design 
After having defined the cardiac CT architectures at a high 
level in subsection 2.1, we will perform a detailed design, 
based on the target performance indexes. 
Design Spreadsheet. For each of the cardiac architectures 
we will develop a detailed design spreadsheet including all 
detailed dimensions, scan times, sampling rates, photon 
fluxes, nominal image quality metrics, and their 
relationships. Then, we will optimize the design and address 
any critical design questions.  
Component Assessment. The majority of the studied 
cardiac CT architectures will require innovations in the X-
ray source, the collimation, the detector, the anti-scatter 
grid, the gantry and other components. For each design we 
will define the required subsystems in detail and assess the 
technical feasibility of these components, their performance 
bounds, and manufacturability issues.  
System-level Considerations. After the characteristics of 
each key component are analyzed, we will further analyze 
the major system integration issues. For example, for the 
engineering implementation of our proposed composite-
scanning mode, we recognize that the anti-scatter grid must 
be effectively addressed [6].  
Image Quality Evaluation. The image quality is primarily 
characterized by two aspects: resolution and artifacts [9]. 
Image resolution has three aspects: high-contrast resolution 

(spatial resolution) for distinguishing adjacent objects of 
high-density, low-contrast resolution (contrast resolution) 
for differentiating an object from its background which is 
similar to the object in terms of gray-scale, and temporal 
resolution for capturing structures in motion which is most 
relevant to cardiac imaging. Image noise imposes a grainy 
appearance due to random fluctuations of the x-ray photon 
flux, and is a key factor in limiting low-contrast resolution. 
Image artifacts are structured or patterned interferences.  
Dose Requirements. We will pay a special attention to the 
radiation dosage and its minimization. The performance 
criteria are fundamentally linked to patient dose. It will be 
key to assess the dose-efficiency of the various approaches, 
or more specifically whether the flux profile is well 
optimized and whether the detection efficiency is high. We 
will estimate the effective dose for a typical cardiac CT scan 
using each of the proposed architectures subject to the 
established clinical dose benchmark 5mSv.  
Cost Estimation. Our long-term goal is to develop the next 
generation cardiac CT for large and medium-sized hospitals 
and clinics in the US. Based on the aforementioned 
engineering analysis, we will estimate the development or 
prototyping expenses, mass production costs, maintenance 
burdens, and so on. Then, we will predict the market prices 
of the cardiac CT designs of our interest (relative to today’s 
commercial scanners), which will be used to establish the 
cost-effectiveness and competitive advantages of these 
architecture candidates.  
2.3. Comparative Studies 
All the designs will be entered in a standardized table 
including all performance criteria and the results from the 
overall design, engineering and cost analyses and 
preliminary numerical studies of key image quality and 
radiation dose indexes. Each performance criterion has a 
lower specification limit (LSL) and an upper specification 
limit (USL). A score will be given based on how well each 
specific design meets the specification. Each criterion also 
has a relative importance weight. Based on the weighted 
sum of all scores, the different concepts will be ranked. 
Where appropriate, multiple design iterations will be 
performed, until a quasi-optimal design is achieved for each 
type of architecture. This tradeoff study will result in a 
systematic quantitative comparison and enable us to obtain 
two promising architectures for the algorithm development 
described in section 3 and the performance evaluation 
described in section 4. 
 

3. ALGORITHM DEVELOPMENT 
 

Our algorithm development is categorized into three classes: 
(1) global reconstruction, (2) interior reconstruction, and (3) 
dynamic reconstruction. While global reconstruction 
algorithms will be used to produce key image quality and 
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radiation dose indexes for the aforementioned comparative 
studies (subsection 2.3), all these types of algorithms will be 
developed and optimized for the selected cardiac CT 
architectures. Furthermore, we will perform the algorithm 
development (for iterative algorithms in particular) in the 
compressive sampling framework [10-12]. 

 
4. PERFORMANCE EVALUATION 

 

The architectures and algorithms will be evaluated at three 
levels. First, a more detailed evaluation will be conducted 
with numerical tests using the well-established 
comprehensive GE CT simulator CatSim [13]. The 
competing reconstruction algorithms will be compared for 
the selected architectures in terms of major quality and dose 
indexes. Second, where possible measurement experiments 
will be done using commercial CT scanners or research CT 
scanners to emulate the selected architectures and validate 
the associated algorithms with real projection measurements 
from various phantoms. This is to ensure all relevant 
physical effects are considered. Third, observer studies [14-
15] will be performed to evaluate the images from the 
experimental studies as well as the selected system designs.  

      We will perform two types of observer studies: (1) an 
image evaluation study and (2) a system evaluation study. 
For the image evaluation study, we will focus on the 
simulation and phantom studies with the antropomorphic 
phantoms. The system evaluation study will be based on the 
“virtual brochure” method. We will produce virtual 
brochures for the two most promising candidates of our 
cardiac CT designs, including key specifications, system 
diagrams, scan protocols, simulated images and price 
estimates (relative to today’s commercial scanners). Then, a 
marketing survey will be conducted to collect ratings and 
determine both the clinical demand and the commercial 
viability. Specifically, we will define six levels of efficacy 
as the probability of benefit to individuals from each system 
in the content of cardiac imaging, which are technical 
efficacy, diagnostic accuracy, diagnostic thinking efficacy, 
therapeutic efficacy, patient outcome, and societal efficacy 
[16-17]. Combining the observer studies with the 
quantitative studies we will have a very solid foundation to 
define the next-generation cardiac CT system. 
      

5. CONCLUSIONS 
 
In this paper, we have proposed a scheme for evaluation of 
promising candidate cardiac CT architectures to define the 
next generation cardiac CT architecture. It will help make a 
major step forward in cardiac CT performance and patient 
radiation dose.  We invite critiques and suggestions from 
peers and welcome collaborative opportunities. 
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ABSTRACT

3D iterative CT reconstruction is an active research area
in medical imaging. Compared with analytic reconstruction
methods such as FDK, iterative methods may provide bet-
ter reconstruction results for incomplete and noisy projec-
tion data. The simultaneous algebraic reconstruction tech-
nique (SART), one of the most popular iterative reconstruc-
tion methods, is applied in the cone-beam geometry for high-
resolution reconstruction, with the help of graphics hardware
(GPU) and total variation (TV) regularization. GPU greatly
improves the efficiency of SART, which is computationally
intense for CPU, and thus makes it suitable for clinical ap-
plications. TV regularization reduces the effects of noise and
helps the convergence of SART for noisy data. Experimental
results for both synthetic and real data are provided to evalu-
ate the accuracy and efficiency of the proposed framework.

Index Terms— Cone-beam CT, iterative reconstruction,
SART, GPU, TV regularization

1. INTRODUCTION

Iterative CT reconstruction methods such as SART have been
proposed since the late eighties [1]. These methods have
advantages over analytical reconstruction methods such as
FDK [2] for incomplete and noisy projection data. However,
most industrial manufacturers have utilized FDK in their
products so far because the high computational cost of SART
hinders its practical application.

Iterative reconstruction methods have recently become ac-
tive again due to the rapid developments of commodity hard-
ware, such as GPU [3] [4] and Cell BE processor [5]. This
hardware may greatly enhance the efficiency for SART and
make SART appropriate for clinical applications.

On the other hand, regularizations are usually necessary
for SART to reduce the effects of noise and enhance conver-
gence, especially for projection data with strong noise. Total-
variation (TV) minimization is a good method for the regular-
ization of SART.

The performance of SART is studied in this paper. A
GPU is utilized to improve its efficiency, while TV minimiza-

∗Send correspondence to Ross whitaker (whitaker@cs.utah.edu).
†Arvi.Cheryauka@med.ge.com, David.P.Ferguson@med.ge.com

tion [6] is utilized to regularize the SART algorithm. Recon-
struction results for both synthetic and real data are presented.

The paper is organized as follows. Section 2 introduces
the background information for SART and TV regularization.
GPU implementation details are shown in Section 3. Experi-
mental results are provided in Section 4, followed by the sum-
mary in Section 5.

2. BACKGROUND

Mathematical details of the SART algorithm and the TV regu-
larization are provided in this section. These algorithms form
the framework implemented in Section 3.

2.1. Introduction to SART

SART [1] takes every pixel in the object to be reconstructed
as an unknown variable, and and it takes each projection mea-
surement as a weighted summation of these variables. SART
accomplishes CT reconstruction by solving the unknown vari-
ables from the acquired measurements. Specifically, SART is
designed to solve the following simultaneous equation system

pi =

N
∑

j=1

wijvj (1)

where pi represents theith projection, wij represents the
weight which the voxelvj contributes its value to the pro-
jection i. Reconstruction is achieved by findingvj from the
equation system (1). The weightwij is assumed to be known.

The SART algorithm solves the equation system by itera-
tively applying a correction array to each voxelvj as follows

vk+1

j = vk
j + λ

∑

i

{

wij
pi−

P

N

m=1
wimvk

m
P

N

m=1
wim

}

∑

i wij

(2)

whereλ is aconstant coefficient. This process in Eq. 2 can be
decomposed into two steps: the forward projection step and
the backward projection step. The forward projection step
computes a correction image for each ray, i.e.,

∆ri =
pi −

∑N

m=1
wimvk

m
∑N

m=1
wim

(3)
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The backward projection step updates each voxel by backpro-
jecting toit the contribution of each correction image, i.e.,

vk+1

j = vk
j + λ

∑

i wij∆ri
∑

i wij

(4)

The SART algorithm has advantages over analytic recon-
struction methods based on FDK [2], especially when few
projections are available and when the projections are noisy.
It is also more stable to the variations in the imaging geom-
etry, such as the moving trajectory of imaging sources and
detectors. However, SART is computationally intense, and
it may require a lot of memory to store the weight infor-
mation. Furthermore, regularization is usually necessary for
noisy data.

2.2. Introduction to TV Regularization

Total variation regularization [6] is a nonlinear image regu-
larization method that reduces the total variation of an image
while keeping the regularized image similar to the original
image. Given an imagef defined on domainΩ, this method
seeks a regularized imageu which minimizes the following
energy function

F (u) =

∫

Ω

‖∇u‖ +
α

2

∫

Ω

‖u − f‖2 (5)

whereα is aconstant coefficient. This energy functional has
the nice property of preserving straight, sharp edges, and thus
allows solutions to have a piecewise flat property.

The minimization of the energy functional (5) is numeri-
cally calculated using the following updating scheme

un+1 − un

△t
= ∇ ·

∇un

‖∇un‖
− α(u − f) (6)

The minimizationis iteratively processed until convergence.
Fig. 1 illustrates the regularization effects of TV. Fig. 1(b)

shows the TV regularization results from the original image
Fig. 1(a) with the coefficientα = 0.1, and Fig. 1(c) shows the
TV regularization results with the coefficientα = 0.5. It can
be seen that the TV regularization results contain less noise
than the original image and that the results in Fig. 1(c) are
closer to the original image with largerα.

3. IMPLEMENTATION DETAILS

SART and TV are combined for iterative reconstruction in
this paper. Specifically, Eq. 3, Eq. 4 and Eq. 6 are applied
sequentially for a specified number of iteration until conver-
gence. GPU implementation details for Eq. 3 and Eq. 4 are
illustrated here, utilizing the methods in [7].

The mechanism of ray-based forward projection for Eq. 3
is illustrated in Fig. 2. For each projection, the ray from the

(a) (b) (c)

Fig. 1. Illustration of TV regularization. (a) Original noisy
image. (b) Image regularized using TV withα = 0.1. (c) Im-
age regularized using TV withα = 0.5.

(a)

Fig. 2. Illustration of ray-based forward projection using
GPU.

source to each pixel in the detector plane is spatially deter-
mined, and the intersection points of the ray entering and ex-
iting the object are calculated. The projection measurement is
then calculated by accumulating the samples from the object
along the ray between the intersection points using an equidis-
tant step size. Interpolation methods such as trilinear inter-
polation may be applied to specify the object value at each
sampling point. In the GPU implementation, the object data
is stored as a 3D texture to utilize the hardware-accelerated
interpolation functionality in the graphics card. Furthermore,
GPU computes the weight information on the fly without stor-
ing it to save GPU memory.

The mechanism of voxel-based backward projection for
Eq. 4 is illustrated in Fig. 3. For each voxel in the object, the
ray determined by the source and this voxel is utilized to cal-
culate the intersection point with the detector plane. The cor-
rection value for this voxel is then calculated by interpolating
the values in the detector plane. In the GPU implementation
the correction data from the detector plane is stored as a 3D
texture for fast data access and efficient hardware-accelerated
interpolation.

4. EXPERIMENTAL RESULTS

Experimental results for cone-beam CT are presented here to
illustrate the GPU implementation of SART. Nvidia CUDA
is utilized for the GPU implementation on the Nvidia’s
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(a)

Fig. 3. Illustration of voxel-based backward projection using
GPU.

Geforce GTX 280 GPU, which has 240 processor cores with
1296MHz processor clock, 1GB GPU memory with 1107
MHz memory clock, and 141.7GB memory bandwidth.

Fig. 4 shows the SART reconstruction results for large
real data using GPU. The object is a chest of a mouse of size
256×256×193. 100 projections are generated with the de-
tector size 339×339. Fig. 4(a) shows the original image for
slice 110 in the mouse data. Fig. 4(b)-Fig. 4(d) represent the
SART reconstruction results after 5, 40, and 200 iterations
respectively. The whole 200 SART iterations take 22.9 sec-
onds using the Nvidia Geforce G280 graphics card, with 0.1
second for each iteration on the average. Fig. 5 shows the vol-
ume rendering of the corresponding reconstruction results in
Fig. 4 using the same transfer function. These results show
that the GPU implementation of SART may achieve accurate
reconstruction in a very efficient way.

Fig. 6 demonstrates the effects of TV regularization on
SART results for noisy projection data. Fig. 6(a) shows the
110th slice of the original data. Multiplicative noise is added
to the generated projection data. If the value of a projection
is p, its value is changed to bep(1 − 0.3α), whereα is a ran-
dom number between 0 and 1. Fig. 6(b) shows the 1st slice
of the projection data before adding noise, while Fig. 6(c)
represents the same slice after noise is added. Fig. 6(d) and
Fig. 6(f) show the SART reconstruction results from noisy
projection data after 20 and 200 iterations with no TV reg-
ularization. Fig. 6(e) and Fig. 6(g) show the SART results
from noisy projection data after 20 and 200 iterations with
TV regularization. It can be seen that TV regularization helps
SART achieve much better reconstruction results, which con-
tains much less noise. The reconstruction results in Fig. 6
with TV regularization take 25.8 seconds for 200 iterations.

5. SUMMARY

Iterative CT reconstruction methods, which are robust to in-
complete and noisy projection data, have great potential in
real applications. SART, along with TV regularization, is uti-
lized in the paper for reconstruction. CUDA GPU is utilized
to speed up the computation. This paper presents the results
on 3D real images. The results show that GPU-accelerated

(a) (b)

(c) (d)

Fig. 4. GPU reconstruction results using SART for large
mouse chest data. (Object volume: 256×256×193, Projec-
tion data: 100×339×339, no TV). (a) Original image for slice
110. (b) SART results after 5 iterations. (c) SART results af-
ter 40 iterations. (d) SART results after 200 iterations.

(a) (b)

(c) (d)

Fig. 5. Volume rendering of GPU SART reconstruc-
tion results for a mouse chest. No TV. (Object volume:
256×256×193, Projection data: 100×339×339). (a) Orig-
inal volume. (b) SART results after 5 iterations. (c) SART
results after 40 iterations. (d) SART results after 200 itera-
tions.
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 6. 3D SART using TV regularization for mouse
chest data. (Object volume: 256×256×193, Projection
data: 100×339×339). (a) The 110th slice from the orig-
inal volume. (b) The 1st slice from the projection data.
(c) The 1st slice from the projection data with added noise.
(d) SART results after 20 iterations with no TV regulariza-
tion. (e) SART results after 20 iterations with TV regulariza-
tion. (f) SART results after 200 iterations with no TV reg-
ularization. (g) SART results after 200 iterations with TV
regularization.

SART algorithm with TV regularization may generate high-
quality reconstructions with high potential for clinical appli-
cations. Future work will be focused on the SART conver-
gence with respect to noise and new regularization methods.
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Parallel ART 
Cyril Riddell, GE Healthcare, 283 rue de la Minière, 78533 Buc cedex 

 

I. INTRODUCTION 

The Algebraic Reconstruction Technique (ART) is a fast 

algorithm used in tomographic image reconstruction [1]. 

Further developments have lead to the theory of the 

projection onto convex sets (POCS) that has grounded ART 

in a solid theoretical framework [2].  POCS projectors and 

projections are intended in the sense of an operator that 

generates “the unique projection Px  of a point x on convex 

set C as that point in C closest to x”. 

Original ART principle is as follows: 

a) A set of measurements is collected, from which an 

unknown vector must be estimated. 

b) A set of projectors onto convex sets is defined, one 

projector per measurement, that projects an image vector 

onto a convex sub-space where all image vectors verify 

the measurement. Each measurement is therefore an 

equality constraint that the corresponding projector 

enforces on any given vector 

c) The solution is found iteratively by applying, at each 

iteration, all projectors successively. 

POCS theory adds to this basic framework the possibility of 

applying non-linear constraints. It thus extends ART to a tool 

for convex optimization of non-differentiable criteria (e.g. 

total variation). In the rapidly growing field of compressed 

sensing, dynamic tomographic applications have been 

demonstrated using updated versions of the ART algorithm 

associated with total variation minimization [3-4]. 

ART presents several advantages in tomography: 

- No assumption on the acquisition pattern is required to 

provide optimal reconstruction. 

- Theoretical derivation of the tomographic projector for 

one measurement is simple. 

- Convergence is proven under the assumption that the 

solution exists. 

- An update of the vector to be estimated is performed by 

each projector, which provides fast convergence. 

- Additional constraints can be accommodated, especially 

non-linear, as long as they can be expressed as a 

projector onto a convex set. 

One must also acknowledge several limitations: 

- If the data is inconsistent, as in the presence of noise, 

and no solution exists, the algorithm will only cycle 

through a set of feasible solutions. 

- Computationally speaking, an update after each single 

measurement may not be optimal: most efficient parallel 

implementations are obtained by simultaneous 

processing of a block of measurements. This has lead to 

an alternative algorithm: Simultaneous-ART (SART) 

[5], which, however, is not a POCS technique. 

- Even though the projector formula is simple, it involves 

a norm computation that does not exist in SART and 

standard least-squares techniques. 

In the following, we will propose a parallelization of the 

computation  of ART for tomographic reconstruction, based 

upon the observation that application of constraints along 

measurements lines that do not intersect, lead to the same 

updated volume whether the projectors are applied 

simultaneously or successively. Although this observation is 

obvious in the continuous case, it has not been exploited in 

the discretization phase, since, after discretization, parallel 

lines of interpolated samples may share pixels. Thus, in the 

SART iteration, simultaneous use of measurements along 

lines that do not intersect is not equivalent to the successive 

application of each measurement projector defined in ART. 

It is therefore distinct from ART and associated POCS 

theory. 

In the following, we shall revisit the discretization of ART 

through an extrinsic – intrinsic decomposition that allows for 

a “parallel ART” scheme that will maintain the equivalence 

between successive and simultaneous updates of a vector for 

a set of parallel measurement lines. Numerical schemes will 

be proposed that are arguably simpler and faster than 

standard ART implementations, while maintaining the 

theoretical properties of POCS, such as convergence and use 

of non-linear constraints. 

II. THEORY 

A. Linear constraints 

We consider a tomographic linear operator R  that captures 

the geometry of the measurement system (parallel-, fan- or 

cone-beam geometry), the sampling (number and sizes of 

image pixels and measurement bins), the chosen 

interpolation (e.g. nearest neighbor, linear, Fourier), the 

trajectory (e.g. circular, helical, tomosynthesis) and, 

possibly, additional non-stationary physical aspects to be 

corrected for during the reconstruction. 

A set of measurements defines a set of linear constraints. 

Let us first recall the expression of the projection )(
0

fP
s

 of a 

vector 
0

f  as the closest vector that verifies a set of linear 

constraints sfRP
s

=)(
0

. This projector is defined as a 

constrained optimization problem: 
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The interest of the ART method lies in the fact that, if one 

considers only a subset of constraints, i.e. 
θθ

sfR =  where θ  

is a subset of measurement indices, inversion of ( ) 1−tRR θθ  

might be easier to express and compute. A set of projectors 

can then be defined with the property that successive 

application of these projectors will lead to the global 

solution. Under the assumption that the solution exists, we 

have: 
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Indeed, if we further explicit operator R as a system matrix 
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 relating J pixels of index j to I measurements 

of index i, and if the subset is reduced to one linear 

measurement, then: 
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The projector therefore reduces to: 
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B. Change of variable 

We denote U  a unitary operator, i.e. such that t
UU =−1  

(symbol 
t
 is used indifferently for the transpose of a real 

operator or for the conjugate of a complex operator). We 

consider the same set of linear constraints sRf = . A change 

of variable fUf
t=

~
 leads to the equivalent constraints 

sfR =
~~

 with RUR ≡
~

. The associated projector P
~

 is 

defined as: 
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We conclude that: 
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We will use extensively this result thereafter.  

III. EXTRINSIC-INTRINSIC DECOMPOSITION 

Extrinsic-intrinsic decomposition consists in splitting a 

tomographic acquisition into the succession of two generic 

operations: one, extrinsic, that samples the patient on a grid, 

the other, intrinsic, that models the tomographic acquisition 

of the patient on that grid. Standard reconstruction defines 

the extrinsic matrix once for all as the original grid of 

samples to be estimated, while the intrinsic operator models 

all measurements with respect to this grid. One ART 

projector is defined per row of the matrix of this intrinsic 

operator. Even though this approach reflects the physical 

reality of a still patient inside a rotating scanner, it is 

conceptually equivalent to consider a rotating object inside a 

still scanner. With this point of view in mind, there still is a 

unique, hopefully simplified, intrinsic operator that models 

the acquisition sampling pattern, together with as many 

extrinsic operators as rotation angles that rotate the object, 

i.e. re-samples the object over the grid defined by the 

intrinsic operator. 

Let us consider again a subset of constraints 
θθ

sfR =  

enforced by projector 
θ

P  where θ  is a subset of 

measurement indices. For each subset θ , we define an 

extrinsic operator, denoted 
θ

U . We denote 
0

R  the intrinsic 

operator such that 
θθ

URR
0

=  and 
θ,0

P  the projector 

enforcing constraint 
θ

sfR =
0

. 

We now assume that each extrinsic operator is unitary, i.e. 

such that tUU
θθ

=−1 . We further define 1−

−
≡

θθ
UU . Each 

extrinsic operator is therefore used as a change of variable 

and we have: 

θθθθθθ
UPUPURR

,00 −
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This change of variable is easily captured using the matrix 

form of the projector: 
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Therefore the set of projectors 
θ

P  is replaced by the 

combined use of extrinsic unitary operators 
θ

U  and a set of 

projectors 
θ,0

P  derived from the intrinsic operator 
0

R . Thus, 

the ART iteration can be expressed as: 
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Since each extrinsic operator 
θ

U  is unitary and invertible, 

the ART iteration gets simplified since the inverse extrinsic 

operator of a subset can be combined to the extrinsic 

operator of the next subset, thus reducing computation. The 

use of rigid transforms for 
θ

U  will accommodate any 

trajectory by sampling the object with a grid aligned with the 

detector sampling pattern. 

For cone-beam geometry, it is standard in the field of 

“computer vision” to use the product of a rigid transform and 

a pure perspective projective transform [6]. The perspective 

transform is constant at all positions since it is defined by the 

camera characteristics, and the extrinsic operator is restricted 

to the rigid transform (modeling the camera displacement). 

In the field of “computer graphics”, it is standard to further 

factorize the perspective transform as the product of a pure 

elastic transform (change of scales in the continuous case and 

of sampling rates after discretization) and a so-called pure 

orthographic (i.e. parallel) projection transform [7]. This 

better reflects the conditions of C-arm-based cone-beam 

tomography, where deformations during the rotation 

introduce variations in the perspective geometry intrinsic 

matrix that is commonly used, which cannot be considered 

truly intrinsic anymore. 

Cone-beam tomography can therefore be handled with 

extrinsic operators that combine all rigid and elastic 

transforms, while keeping the same intrinsic operator as for 

parallel geometry: a pure orthographic transform. 
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IV. EXTRINSIC OPERATOR 

A. Elastic transform 

Once sampled, the elastic transform is not invertible in 

general: sub-sampling results in information loss that cannot 

be recovered by the inverse transform. If the elastic 

transform is constant for all extrinsic operators, it can be 

factorized among all projectors so that it does not interfere 

with convergence. In other words, the reconstruction is 

performed with rigid transforms only, then the final 

reconstruction is obtained by applying the inverse extrinsic 

transform. An approximate inverse due to interpolation 

errors will only alter this final step of the reconstruction. This 

is applicable to tomosynthesis when the source trajectory 

remains in a plane [8]. 

B. Rigid transform 

Rotations and translations can be performed without 

information loss depending on the interpolation scheme. 

Importantly, a rigid transform based on linear interpolation 

will not result in a unitary matrix: the transposed matrix is 

not the exact inverse, raising the same problems as seen with 

elastic transforms. In a tomographic projector, the rotation 

can be decomposed into an elastic transform and a 

succession of translations [9]. This elastic transform can be 

removed from the iterative process by pre-processing the 

data. Therefore, invertibility of the translation is sufficient. 

Invertible translations can be achieved at least with nearest 

neighbor and Fourier interpolations. Nearest neighbor 

interpolation accuracy can be increased through over-

sampling. 

Importance of the invertibility of the extrinsic transform is 

illustrated on fig. 1 where data is simulated using parallel 

geometry that is reconstructed by parallel ART with an 

extrinsic matrix made of translation only. 

V. ORTHOGRAPHIC INTRINSIC OPERATOR 

The proposed extrinsic – intrinsic decomposition is most 

advantageous when using an intrinsic operator that is a pure 

orthographic transforms. This means that the extrinsic 

transforms (using elastic pre-processing or not) have aligned 

the reconstruction grid with a sampling pattern as in parallel 

geometry. Intrinsic operator 
0R  is therefore reduced to a sum 

over either the rows or the columns of the sampling grid. It is 

arguably the most intrinsic tomographic operator! 

We now denote jP ,0  the ART projector for a single 

measurement, that is, for any line of the grid. Denoting 
jL  

the set of pixel samples in line j and jl  its cardinal, jP ,0  has 

the following expression: 
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The projector has therefore a simple expression where all 

pixels of line 
jL  are updated with the average difference 

over 
jL  between a pixel sample of index 

j
Li ∈   and the 

measurement j. Importantly, it does not involve interpolation. 

Since the projectors are applied along parallel lines, whether 

they are all rows or all columns, they update the grid samples 

independently of the other lines. There is therefore no 

difference between applying successively and simultaneously 

projectors jP ,0  for a subset θ  of parallel lines of the grid.  

We can thus define a single projector θ,0P  per subset θ  of 

parallel lines such that:  

∏
∈

≡
θ

θ

j

jPP ,0,0  (13) 

Computationally speaking, on a subset per subset basis, all 

measurements can be used in parallel with the same output as 

if they were used simultaneously. It must be noted that the 

simplicity of projector jP ,0  derives from the simplicity of the 

intrinsic tomographic operator
0R . 

VI. CONSTRAINED INTRINSIC OPERATOR 

A. Tomographic positivity constraint 

In POCS theory, component-wise thresholding or clipping of 

the image according to component-wise thresholds defines a 

projector onto convex set. This allows for applying a 

positivity constraint to the solution. This constraint can be 

further refined for the tomographic case by considering that 

the integral of a positive function along a line is greater or 

equal to the maximum of the function over this line: 
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We call this enhanced constraint the tomographic positivity 

constraint, and we combine it with the intrinsic projectors to 

yield: 
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This property enforces a stronger constraint than the standard 

positivity case over the solution. In particular: 
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This constraint is expected to be particularly effective when 

reconstructing contrast enhanced subtracted X-ray 

acquisitions. 

B. Support constraint 

A support constraint simply consists in setting to zero the 

components of the vector known a priori to be outside of the 

object support. It is partly redundant with the tomographic 

positivity constraint, which also contributes to defining a 

reconstruction support, since a zero measurement will set to 

zero all samples of the integration line. Samples that do not 

contribute to the measurements are thus excluded a priori 

from the reconstruction process. The only visible trace of this 

constraint is the value 
jl  that was defined as the number of 

samples in line 
jL  used by projector 

jP ,0 . More precisely, 

this value should be the number of non-zero samples in the 

row. In the case 1=jl ,  one and only one sample must be 

updated, and it is simply set to 
js . 
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VII. CHANGE OF REPRESENTATION DOMAIN 

Up to now, the intrinsic operator has been defined in the 

spatial domain: the grid samples the object in the Euclidean 

space. A simple result of tomography states that for a 

suitable f function and suitable w functions forming a basis 

W: 

( )

( ) [ ]∫ ∫∫

∫
=⇒

=

dxdyywyxfywys

dxyxfys

)(),()(
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For the intrinsic operator, f is a re-sampled version of the 

object of interest such that it is aligned with the set of 

measurement lines θs  defined here by ∫= dxyxfs
jj
),(

,θ
. 

We denote dydxywyxfs
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 the samples of f and 
θs  in basis W. 

Application of (16) states that constraint 
θsfR =

0
 implies 

constraint 
θsfR ˆˆ

0
= . For each measurement 

w
ŝ  in basis W, 

the associated projector simply is: 
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leading to similar intrinsic projectors for each function w of 

the W basis: 
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A. Fourier orthographic intrinsic operator 

Eq. 19 shows that the intrinsic orthographic operator has the 

same implementation if the vector is Fourier-transformed in 

the direction orthogonal to the orthographic projection. Each 

projector applies a constraint over each sampled frequency w 

defined by the Fourier transform. All frequencies are 

equivalently updated successively or simultaneously. 

If we consider the ramp filter used in analytical 

reconstruction, we see that it is the application of a diagonal 

operator in the Fourier space. It combines derivation and the 

Hilbert transform. Let us denote this filter ( )wdD ˆdiag= , it is 

obvious that θsfR ˆˆ
0 =  is equivalent to 

θsDfDRfDR ˆˆˆ
00

== , 

leading to the ramp-filtered intrinsic projector: 
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Parallel-ART in the Fourier domain can therefore combine 

algebraic reconstruction with ramp filtering (or any other 

relevant filtering). In the cases where the extrinsic transform 

is made of translations, the whole parallel-ART algorithm 

can be implemented in the Fourier domain exclusively with 

eq. (20) associated with phase-shifts for the translations of 

the extrinsic operator. 

VIII. CONCLUSION 

An extrinsic-intrinsic decomposition of the tomographic 

problem has been proposed that decouples sampling from 

tomographic inversion. It allows for simpler expression of 

ART projectors that can be applied in Fourier space and 

combined with Fourier filtering. It isolates interpolation 

issues from tomographic modeling and thus might serve as a 

tool for evaluating whether the system model or the sampling 

is key to high-quality reconstruction of real tomographic 

data. 
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Fig 1: Reconstruction of simulated data with parallel-ART. Left image: reference image. 

Middle image: parallel ART reconstruction with non-invertible linear interpolation extrinsic 

matrix. Right image: parallel ART reconstruction with invertible nearest-neighbor interpolation 

extrinsic matrix. 
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3-D  Geometry Calibration on a Mobile X-Ray C-arm 

for CT Imaging and Surgical Navigation 

Prabhanjana Kalya, Rocco  Cherone, and Arvi Cheryauka 

 Abstract– The design of mobile X-ray C-arm equipment with 
image tomography and surgical guidance capabilities involves the 

retrieval of repeatable gantry positioning in three-dimensional 

space. Geometry misrepresentations can cause degradation of the 

reconstruction results with the appearance of blurred edges, 

image artifacts, and even false structures. It may also amplify 

surgical instrument tracking errors leading to improper implant 

placement. In our prior publications we have proposed a C-arm 

3D positioner calibration method comprising separate intrinsic 

and extrinsic geometry calibration steps. Following this approach, 

in the present paper, we extend the intrinsic geometry calibration 

of C-gantry beyond angular positions in the orbital plane. Our 

method makes deployment of markerless interventional tool 

guidance with use of high-resolution fluoro images and 

electromagnetic tracking feasible at any angular position of the 

tube-detector assembly. Variations of the intrinsic parameters 

associated with C-arm motion are measured off-line as functions 

of orbital and lateral angles. The proposed calibration procedure 

provides better accuracy, and prevents unnecessary workflow 

steps for surgical navigation applications. With a slight 

modification, the Misalignment phantom, a tool for intrinsic 

geometry calibration, is also utilized to obtain an accurate ‘image-

to-sensor’ mapping. We show simulation results, image quality 

and navigation accuracy estimates, and feasibility data acquired 

with the prototype system. The experimental results show the 

potential of high-resolution CT imaging (voxel size below 0.5 mm) 

and confident navigation in an interventional surgery setting with 

a mobile C-arm. 

I. INTRODUCTION 

 The design of mobile X-ray C-arm equipment with 

computer tomography and surgical guidance capabilities 

involves the retrieval of repeatable gantry positioning in three-

dimensional space [1]. Geometry misrepresentation in the 

image reconstruction can cause degradation of the imaging 

results with the appearance of blur, artifacts, and even false 

structures. It may also amplify tracking error for surgical 

instruments and lead consequently to wrong implant 

placement. In our prior publications we have proposed a C-

arm 3D positioner calibration method comprising separate 

intrinsic and extrinsic geometry calibration steps [2]. 

Following this approach, in the present paper, we extend the 

use of the intrinsic geometry calibration technique beyond the 

orbital plane into the 3D space of C-arm positioning. This 

geometric information is necessary for 2-D navigation, multi-
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modality data co-registration, and, potentially, for tomographic 

imaging deploying the C gantry motion trajectory into three-

dimensional space [4]. 

  

II. C-ARM GEOMETRY CALIBRATION 

C-arm geometry characteristics can be derived by a) 

supremely accurate implementation of the gantry rotation, b) 

obtaining direct measurements using permanent sensors, or c) 

extracting markers from images projecting target of known 

geometry and material property. Following the image-based 

framework,  

 

• The first step in our method is the intrinsic calibration that 

deals with delineation of geometry of the X-ray source-

detector assembly.  

• The subsequent motion characterization (extrinsic 

calibration) uses the previously obtained intrinsic 

parameters.  

 

II.1. Cone-beam Camera Model 

 

In the surgical room the C-arm gantry moves around the 

patient while the patient table is kept motionless. Since 

manufacture of a rigid gantry with highly accurate motion is 

extremely expensive, practical considerations necessitate the 

C-gantry to deviate from programmable position / velocity / 

acceleration profiles. We define a 3-D Camera pinhole model 

introducing 3 intrinsic (two plane coordinates of principal 

point and source-to-imager distance) and 6 extrinsic (3 

translation and 3 rotation displacements) parameters needed to 

uniquely define a cone-beam (CB) projection in 3-D space [5]. 

The systematic deviations from the theoretical trajectory can 

be compensated in the backprojection step. In the next 

sections, we describe derivation of these 9 projection geometry 

values per X-ray projection from the computed assessment of 

the imaging results of the dedicated intrinsic and extrinsic 

calibration targets.  

 

II.2. Intrinsic Geometry Calibration 

 

Intrinsic parameters describe the relative positioning of 

the source and the detector, i.e. 3-D misalignment, which, in 

practice, can be caused by welding defects, mounting 

imperfectness, and deflection of the C-arc due to weight force. 

We have built a removable Misalignment target, which is 

rigidly attached to the detector surface during an off-line 

calibration sweep. The factual geometrical parameters of the 
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target used in image processing are measured by high-

precision FARO-arm equipment [4]. The governing principle 

of image-based intrinsic calibration is to place a number of 

high-opacity markers in pre-defined positions with regard to 

detector pixels and then extract cone-beam geometry 

parameters from the observed shadow locations. The results of 

intrinsic geometry delineation, differences between observed 

and predicted positions of the marker’s centroids, are shown in 

Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was confirmed that relative positioning of the x-ray tube 

and the detector has highly repeatable intrinsic geometry 

parameters. The maximum deviation of the intrinsic geometry 

parameters recorded over 2-week time period is less than 0.1 

percent. Stable alignment characteristics are critical for 

maintaining accuracy in C-arm CT imaging and 2-D/3-D 

navigation over time.  

 

II.3. Extrinsic Geometry Calibration 

 

Extrinsic parameters deal with motion of the C-arm 

assembly in 3D space and relate the Camera and World 

coordinate systems. In a hypothetical cone-beam C-arm CT 

scan, gantry rotates 180+ degrees in one direction strictly in 

the orbital plane. In reality, the C gantry moves along some 

curve in 3-D space. Each time the gantry moves, the actual 

trajectory and its temporal characteristics can deviate from 

their pre-defined values. By acquiring experimental data the 

most probable trajectory can be identified and random 

deviations estimated. 

 

In the first series of experiments, by running a series of 

orbital scans with the prototype C-arm CT system, and taking 

robotic arm measurements, we evaluate the systematic motion 

trajectory and the correspondent spectrum of the spatial 

deviations. The photo in Figure 2 captures measuring C gantry 

motion with use of the high-precision FARO-arm equipment. 

The robotic arm is connected to the C frame and tracks 3-D 

location of the ball-pointer located at the tip of the arm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here we summarize the recorded 10 cyclic orbital runs. 

Maximum angular velocity is equal to 12 degrees per second. 

In Figure 3, the 3-D markers project the locations of the 

bearing ball center expressed in the Reconstruction coordinate 

system, {Xorb, Yorb, Zorb}, associated with the C-arm 

mainframe. This coordinate system can be obtained by 

transaction of rotation and translation is based on least square 

(LS) fits of the coordinate point dataset to a plane and to a 

circle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. High accuracy measurements of 3-D geometry with use of FARO-arm. 

 
Figure 3. 3-D plot of the recorded data visualized as a cloud of 

markers. The data is expressed in the Reconstruction coordinate 

system, where Xorb and Yorb axes define a LS plane of rotation and 

Zorb axis represents a LS axis of rotation. The dotted line circle is a 

LS circle that fits the observed data. 

 

 

Fig. 1. Difference between observed and predicted position of the marker’s 

centroids in the 2-D detector plane. During intrinsic geometry calibration 12 

markers incorporated into Misalingment calibration target are tracked over 350 

gantry positions.  
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The trajectories recorded from different runs overlap with a 

high degree of accuracy. The maximum and standard 

deviations for 3-D displacement from the systematic trajectory 

are equal to 1.09 mm and 0.17 mm, respectively. 

 

For image-based extrinsic calibration, we have designed a 

Motion calibration target comprising a very small number of 

markers located at the periphery of FOV. The results of 

extrinsic geometry delineation, differences between observed 

and predicted positions of the marker’s centroids, are shown in 

Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall maximum non-repeatability of the mechanical 

platform on the experimental prototype system has been 

observed to be less than 0.6 mm in 3-D space. 

III. ORBITAL AND LATERAL C-GANTRY MOTION 

 

The ISO-centric C-gantry of the prototype system has two 

servo-controlled motions: orbital motion and lateral motion. 

The orbital motion keeps the X-ray beam centered on the 

region of interest throughout the 180+º rotation about the 

horizontal axis of the C-gantry, while the lateral motion allows 

the C-gantry to rotate 360º about that axis. 

 

The motion control system utilizes a distributed architecture 

with one motion controller and one servo-node for each axis. 

The feedback components of orbital and lateral motion axis 

include a motor Hall sensor for commutation feedback, a 

motor encoder for velocity feedback, a secondary incremental 

encoder for position feedback, and a potentiometer for 

indicating a reference absolute position. Position Velocity 

Time (PVT) mode is applied for the orbital scan, which is 

designed specifically to give a more direct control over the 

trajectory profile. The PVT mode is essentially a cubic 

position profile defined by the position and velocity at the start 

and end of a segment.  

 

To acquire the position and alignment data in 3-D space, a 

special motion trajectory is considered, in which a full orbital 

scan is performed at the interval of 5-20 degree interval of 

lateral axis. To illustrate the trajectory, the orbital and lateral 

motions are mapped into a 2-D planar map, which is shown in 

Figure 5. 

IV. SURGICAL NAVIGATION WITH EM TRACKERS 

 

Surgical Electromagnetic (EM) navigation systems allow for 

virtual display of the surgical tool superimposed on 2-D or 3-D 

images of the patient anatomy of interest. Surgical navigation 

facilitates minimally invasive surgical procedures by allowing 

for controlled and precise manipulation of the surgical tools 

without requiring additional fluoroscopic visual control thus 

reducing the X-ray dose to the patient and staff. An EM-based 

surgical navigation system comprises the electromagnetic 

tracker, an EM transmitter rigidly attached to the patient’s 

anatomy, an EM receiver attached to the surgical tool, and an 

EM receiver affixed to the imager. The key property of the 

system is the ability to render the instrument tip and trajectory 

in the image coordinate system (2-D image or 3-D 

reconstruction volume) via registration of the tracker 

coordinate system and the image coordinate system. Such 

registration is computed through a sequence of transforms [6]. 

 

The high C-gantry position allows for seamless 

incorporation of the surgical navigation system. Traditional C-

arms, due to mechanical instability factors, cannot guarantee 

accurate positional repeatability and require dynamic 

calibration of each acquired image, which is performed using a 

calibration target attached to the input screen of the detector. 

The new mechanical design of the C-Arm has low non-

repeatable variability and allows for robust off-line 3-D 

geometric calibration. The C-arm can now be used without the 

calibration target being permanently attached, increasing the 

surgical volume and improving the workflow and image 

quality.  

 

 
 

Fig. 4. Difference between observed and predicted position of the marker’s 

centroids in the 2-D detector plane. During extrinsic geometry calibration 8  

markers incorporated into the Motion calibration target are tracked over 350 

gantry positions..  
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Figure 5. 2-D map of workspace without constraints. 
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The navigation error, perceived by the operator as the 

distance between the navigated surgical instrument tip in the 

image and the true instrument position in the image, is one of 

the key elements of the system. In this paper we consider the 

contribution of the imaging system calibration error to the 

overall navigation error in 2-D and 3-D navigation. Our goal is 

to determine the upper bound of this error under realistic 

conditions and thereby validate the intrinsic and extrinsic 

calibration algorithms presented earlier in this paper for the 

purpose of navigation. In this work, we utilize a numerical 

modeling approach. We construct the simulation framework 

that allows for realistic modeling of the error contribution 

under consideration. We take into account the following 

sources of error: 

 

1. Uncertainty in the calibration marker shadows 

detected in the images. This uncertainty depends on 

the utilized image processing algorithms, marker size, 

and detector pixel size. 

2. Uncertainty in the calibration marker mechanical 

locations. 

3. Calibration phantom flexing. The magnitude of this 

effect depends on the phantom mechanical design and 

is modeled using a finite element approach. 

4. Error due to finite elevation of the calibration 

phantom above the image plane and uncertainty in the 

knowledge of this elevation. This effect is modeled 

using mechanical detector design parameters. 

5. Errors due to non-repeatable variations of the C-arm 

intrinsic and extrinsic parameters, modeled using C-

arm prototype alignment and motion characteristics.  

 

We compute the difference between the virtual point in the 

surgical volume in the x-ray image and simulated projection of 

this virtual point using calibrated camera parameters. In the 3-

D case, this error is computed in the reconstruction coordinate 

system. In order to produce the final error estimates, we 

repeatedly inject random errors into the calibration algorithm 

inputs (marker locations, C-arm intrinsic and extrinsic 

parameters, etc.), and measure the average errors over a pre-

specified set of virtual navigation points uniformly covering 

the surgical volume. We measure the errors in terms of Root 

Mean Square errors (RMS) over the surgical volume, and over 

the large set of experiment realizations. 

 

Our simulations show that the 2-D navigation RMS errors 

introduced by the imaging chain are expected to be below 0.5 

mm, which is satisfactory from the point of view of the total 

error budget. The 3-D navigation errors depend on the number 

of gantry positions used to acquire (register) the transform C in 

the process of acquiring projections. The navigation error 

generally decreases with the number of registered C-arm 

orbital positions, but depends on what specific position is 

used. In addition, the 3-D navigation errors depend upon the 

algorithm used to compute the final navigated point in the 

reconstruction coordinate system due significantly non-

isotropic error covariance structure. A special algorithm 

(outside the scope of this paper) is used to produce the results 

reported here. Resulting simulated navigation errors for a 

different number of registered gantry positions are summarized 

in Table 1.  

 

 

 

 

 

 

 

 

 

 

For two registered gantry positions, the navigation error is 

below 0.5 mm, in line with the error achieved in 2-D case. 

V. CONCLUSIONS 

Sequential calibration of the C-arm intrinsic and extrinsic 

geometries show highly accurate results and efficient 

performance. Overall maximum non-repeatability of the 

mechanical platform on the experimental prototype system has 

been observed to be less than 0.6 mm in 3-D space. By 

increasing the positioning accuracy of the C-gantry, high-

resolution C-arm CT imaging (voxel size smaller than a half 

millimeter) as well as more confident 2-D and 3-D navigation 

in interventional and minimally invasive surgery becomes 

feasible. 
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Number of registered gantry 

positions 

 

 

1 
 

2 
 

160 

 

RMS navigation error, [mm] 

 

 

1.2 
 

0.4 
 

0.2 

 
Table 1. 3-D error simulation results summary. 
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Accelerated Fluoroscopy and CT on a Mobile C-arm  

Larry Anderton, Todd Brown, Arvi Cheryauka, Vinton Langille, and Alex Tokhtuev 

 Abstract– Mobile X-ray imagery is an omnipresent tool in 

conventional musculoskeletal and soft tissue applications. The 

next generation of mobile C-arm systems can provide clinicians of 

minimally-invasive surgery and pain management procedures 

with both real-time high-resolution fluoroscopy and C-arm CT 

imaging modalities. In this study, we consider real-time 

fluoroscopic and CT experimental system configurations and 

evaluate their imaging capabilities. To streamline tuning of the X-

ray fluoroscopic and CT IP chains, improve effectiveness of 

observer studies, and support research efforts, we discuss 

Interactive Fluoroscopic Imaging Chain Simulator and CT 

Exerciser. A heterogeneous computing and visualization platform 

has been tested to simulate real-time fluoroscopy on a mobile C-

arm. The Interactive GPU-Accelerated IP Chain Simulator, 

IP9900, was used for tuning anatomical profiles to address 

clinical requests and challenging cases. We consider two 

experimental C-arm CT setups: non-destructive evaluation 

configuration with a rotating stage and medical imaging 

configuration with a C gantry moving around the patient and the 

table. We connect the participating devices through a Mobile X-

Ray Imaging Environment known as MOXIE. Anthropomorphic 

phantom volume renderings and orthogonal slices of 

reconstructed images are displayed. The experimental results 

show CT-like image quality that may be suitable for 

interventional procedures, and near real-time data management, 

and, therefore, have great potential for effective use on the 

clinical floor. 

I. INTRODUCTION 

 Mobile X-ray may be seen as the surgeon’s eyes for 

imaging and navigating in interventional and minimally-

invasive operational procedures [1]. The next generation of C-

arm systems can provide clinicians with both real-time high-

resolution fluoroscopy and in-room C-arm CT imaging 

capabilities [7-8]. In previous studies, we have discussed 

calibration of geometry, image processing algorithms, image 

registration, and image-guidance strategies [3-4]. In this study 

we investigate the imaging capabilities of the mobile C-arm 

prototype, enhanced with commodity hardware devices and in-

house research software. The anthropomorphic phantom image 

reconstruction results are provided.  

II. FLUOROSCOPY 

Fluoroscopy applications may not be as computationally 

intensive as computationally loaded image registration, CT 

reconstruction, or volume rendering, but they impose a 
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different set of constraints on image processing 

implementation. X-ray image detectors produce a video stream 

that must be processed without skipped frames or noticeable 

lag. Until recently, good fluoroscopic image quality was only 

attainable on highly specialized proprietary image processing 

hardware, which cannot be easily reprogrammed for 

acceleration of other computing tasks. 

 

A fluoroscopy image processing chain is simulated for 

benchmarking purposes by executing following operations 

commonly found in modern C-Arms: 

 

- Frame transfer into image processing device memory. 

- Temporal averaging to reduce the amount of quantum 

noise. 

- Spatial averaging to replace or supplement temporal 

averaging when motion-blurring artifacts become 

noticeable. 

- Additional spatial filtration for algorithms such as edge 

detection or other image enhancements. 

- Histogram accumulation for calculation of image metrics 

that can be used to make other operations adaptive. 

- Grayscale conversion that can be used for gamma 

correction or histogram equalization. 

 

Temporal averaging is implemented in a typical recursive 

fashion by adding the currently acquired frame Fa with the 

previously averaged frame Fp  using appropriate weights α and 

(1 - α), so that the current temporal average Fc is the 

superposition of the new and previous frames: 

 

.)1( αα ⋅+−⋅= pac FFF       (1) 

 

Spatial averaging and filtration are implemented by the 

application of convolution kernels, of various symmetric 

geometries, across an image frame. The general solution to a 

2D convolution, gcon, is given as: 

 

).,(),(),( 21221121 lxkxfxxfxxg
lk

con −−⋅= ∑∑
∞

−∞=

∞

−∞=

   (2) 

 

Most practical convolutions are local and can be 

implemented for 1024x1024 images with kernels measuring 

less than 16 pixels in size, thus greatly simplifying 

calculations. Some widely used 2-D kernels, such as Gaussian 

blur, are also separable and can be replaced with the 

application of two 1-D kernels, further reducing computational 

load. 
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III. COMPUTER TOMOGRAPHY 

The Modified Feldkamp-Davis-Kress (FDK) CBCT 

reconstruction algorithm is used for a quasi-circular scanning 

trajectory. The backprojection step is the most resource-

consuming portion of the algorithm. In this study we use the 

same approach as in the earlier work, but implement it in 

different computing environment [3]. 

IV.  SIMULATION FRAMEWORK 

Our methodology is to create a friendly framework utilizing 

a common workstation, to build tools to accelerate image 

analysis, and to improve user interactions. A heterogeneous 

computing and visualization platform has been tested and 

deployed to simulate real-time fluoroscopy on a mobile C-arm. 

Hardware components include an off-the-shelf CPU and GPU 

(Fig.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 is a screenshot of the IP9900 Simulator.  The 

software environment comprises a 64-bit Linux, GCC 

compiler, CUDA compiler, and MATLAB integrated toolkit. 

All image processing is performed using single floating-point 

operations. The program emulates the image processing 

implemented on Mobile X-ray C-Arm [1].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithmic blocks include grayscale conversion, dynamic 

range management, digital subtraction, noise filtering, edge 

enhancement, image rotation, and brightness / contrast 

handling. Anatomical profiles, as they are described in [1], are 

prime tools to manage image processing and display. By using 

the Simulator we adjust the settings in the anatomical profiles 

to address clinical requests and challenging cases [2]. 

 

Figure 3 is a screenshot of the C-arm CT Exerciser.  The 

graphics user interface of 2-D fan-beam tool is demonstrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 2-D and 3-D CT simulation tools work in the filtered 

backprojection framework described in the “Computer 

Tomography” section. The forward and back projection 

algorithms are implemented in Matlab, C, and CUDA. The 

performance is bit-accurate. GPU-accelerated execution is 

more than two orders of magnitude faster than execution of 

Matlab scripts.  

V. SYSTEM SETUP 

To research imaging capabilities of mobile X-ray in C-arm 

CT configurations, we built two experimental systems. Our 

intention is to utilize standard C-arm industry components and 

evaluate image quality with correspondent feature performance 

estimates for systems that have various degrees of complexity 

but share the same hardware and software. This allows us to 

focus on specific subsystem blocks, evaluate their subsequent 

impacts independently, and streamline the experimental 

studies. Fostering this modular feasibility leads to a shorter 

examination period, more transparent management of the 

resources and, eventually, to more predictable outcomes. In 

the previous study we simulated the system’s image chain and 

analyzed its characteristics [3-4]. The real world has many 

challenges and constraints that the simulated world does not 

have. Therefore, by substituting simulation blocks in the image 

chain with real devices and processes, the real world system 

can be gradually, thoroughly, and cost-effectively prototyped. 

 

 
 

Fig. 1.  Nvidia’s Quadro FX 5800 comprising 240 thread processors and 

4 Gb onboard graphics memory [6]. 

 
 

Fig. 2.  Screenshot of the IP9900 Simulator 

 
 

Fig. 3.  CT Exerciser for fan-beam geometry. 
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Fig. 6. Screenshot of the ImageViewer application. 

II.1. Electro-Mechanical Environment 

 

Two setups are used comprising a mobile C-arm mainframe 

prototype and a mobile rotating table depicted in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first system setup includes a stationary X-ray 

acquisition system and an object of interest placed on a 

rotating stage. A similar Non-Destructive Evaluation (NDE) 

configuration is used in the industrial CT, where projection 

geometry can be established and measured very accurately. 

Rotational sweep of an isometric object is an easily 

controllable process. Medical imaging CT protocol requires 

rotation of the X-ray acquisition assembly. Due to the current 

electro-mechanical design, actual motion of the C-arm gantry 

can deviate from the command motion in a systematic and a 

random fashion. 

 

II.2. Software Environment 

 

The participating devices are connected through the Mobile 

X-Ray Imaging Environment, MOXIE, which is a set of 

software applications for internal research in our facility (Fig. 

5). The MOXIE suite consists of three primary applications: 

the MOXIE client that runs on a Windows computer; the 

ImageViewer that runs on one or more Windows computers; 

and the Test Framework that runs on the Real-Time OS 

computer located on the C-arm workstation prototype. Each 

MOXIE module communicates with the others over a 100Mbit 

Ethernet network.  MOXIE supports up to four ImageViewer 

applications running on separate Windows desktop systems.  

 

The MOXIE client is the program interface where user 

specifies parameters of X-ray generation and detection, as well 

as manages data transfer. The calibration procedures of the 

image chain consist of gain equalization, offset correction, and 

bad pixel mapping. The screenshot of the test image is 

demonstrated in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ImageViewer application is used to display imagery 

being received from the C-arm workstation prototype (Fig. 6). 

ImageViewer provides the ability to adjust the brightness and 

contrast of the image, and has a number of magnification 

modes so the user can zoom in on an area of interest. Of 

particular interest is ImageViewer’s ability to display the 

position and value of pixels in the X-ray image.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The MOXIE and ImageViewer applications are driven by 

network connections, so once launched they will monitor the 

network, waiting for commands to process. It is the Test 

Framework, running on the Real-Time OS computer that will 

initiate communications with the hardware subsystems and 

issue commands. When scan data is transferred, hardware-

accelerated image processing starts on a dedicated remote 

computer. 

VI. IMAGING WITH A  ROTATING TABLE 

As it was outlined in the System Setup section, a scan with 

rotational sweep in the horizontal plane is functionally 

equivalent to one with orbital sweep in the vertical plane. An 
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Fig. 5. Mobile X-ray Imaging Environment (MOXIE). 
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Fig. 4. C-arm orbital and turntable rotational scans. 
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anthropomorphic phantom is placed on the rotating stage 

between the detector and the x-ray tube. With the C-arm gantry 

stationary while the tabletop rotates based on a programmable 

velocity profile. This type of setup minimizes non-repeatable 

mechanical errors related to the positioner. Intrinsic and 

extrinsic geometries are calibrated prior to the scan. X-ray 

exposure rate, detector readout rate, and turntable motion are 

synchronized as well. In Figure 7, we demonstrate the imaging 

setup with the use of the stationary C-arm, rotating stage,  and 

hand phantom. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 8, we show the imaging results presented in the 

form of three orthogonal slices and volume rendering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CBCT acquisitions are done at half detector resolution with 

an effective pixel pitch of 0.4 mm and at the standard frame 

rates of 7.5 and 15 frames per second. The turntable rotates at 

a velocity of 12 degrees per second. A typical reconstruction 

from a scan of 225 binned images and of a volume dimension 

of 512
3
 takes less than 15 seconds on Quadro FX 5800.  

VII. IMAGING WITH ROTATING C-GANTRY 

Image reconstruction from data acquired with rotating X-ray 

Tube–Detector assembly relies on accurate geometrical 

positioning of imaging devices with respect to the patient 

anatomy. 3-D geometry calibration concepts, methods, and 

findings are summarized in the separate paper [5]. 

Continuation of feasibility research with moving C-arm gantry 

is in progress, and, in the foreseen future we plan to obtain the 

new imaging results. 

CONCLUSIONS 

Our investigations highlight the X-ray fluoroscopy and CT 

research through the use of the C-arm prototypes, in-house 

experimental developments, and off-the-shelf 

hardware/software components. The Interactive GPU IP Chain 

Simulator and CT Exerciser are found to be helpful in 

accelerating image evaluation and prototyping of new imaging 

solutions. Parallelization of computationally demanding tasks 

using high-performance on-chip devices could be a key to a 

practical and cost-effective mobile C-arm imaging. The NDE-

type and medical imaging cone-beam X-ray prototypes are 

constructed to test the system capabilities. The results obtained 

with the anthropomorphic phantoms show CT-like image 

quality that may be suitable for interventional procedures, near 

real-time data management, and, therefore, have great potential 

for effective use on the clinical floor. 
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Fig. 8. 3-D reconstructed image of the Hand phantom. 

 
 

Figure 7. The Hand phantom. 
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Abstract—In this paper the way to enhance the image quality
of 3D-CT reconstruction by means of noise filtering in 2D
projections is shown. The noise reduction is done by applying
a bilateral filter, which is well known for its edge-preserving
quality. During the measurement of the projections the noise
signal of the system is superimposed to the image signal. This
noise propagates into the reconstruction and can be measured in
the cross sections of the reconstructed volume. In order to reduce
the noise in the volume, the preprocessing of the projections is
extended by noise filtering prior to the logarithm transform and
the ramp filtering. The capability of the bilateral filter to reduce
image noise without blurring or corruption of the image contents
combined with the real-time implementation on FPGA makes this
filter suitable for the application to the x-ray projections. As it
is shown in this paper, not only the noise is suppressed in the
reconstruction, but due to the edge-preserving filtering of noise
in the projections the structural details in the reconstruction are
resolved better.

I. INTRODUCTION

The aim of noise filtering in 2D projections is the en-
hancement of the image quality of 3D-CT reconstruction.
Thereby the emphasis is set to the real-time processing of
the projections, so that there is no negative influence on the
reconstruction time. The capability of real-time processing
is reached through implementation of the bilateral filter on
FPGA. The FPGA design has passed the according tests in
our previous work [4].

The noise signal of the system is superimposed to the
image signal during the acquisition of the projections. This
noise propagates into the reconstruction and corrupts the image
contents of the cross sections of the reconstructed volume. In
order to lessen the image quality degradation in the volume,
the preprocessing of the projections is extended by noise
filtering prior to the logarithm transform and before the ramp
filtering. In this work the reconstruction is done with the
Feldkamp-Davis-Kress FDK algorithm, for the ramp filtering
the Shepp-Logan filter is used.

The noise signal is considered as a random variable with
Poisson statistics, which converges towards a random variable
with Gaussian statistics for a large number of detected quanta.
The bilateral filter, first presented in [1], can be adjusted to the
noise statistics. Due to the possibility of adapting this filter to
the noise statistics it is a well known noise reduction method
in computed tomography. It has been used for both sinogram
smoothing [2] and image space noise reduction [3]. In this
paper the processing results of raw projection data are shown.

The capability of the bilateral filter to reduce image noise
without blurring the x-ray projections combined with the
fast implementation on FPGA makes this filter suitable for
the application in a running computer tomograph. Without
disturbing the data flow, the noise in the projections can be
reduced exceedingly, which implicates the enhancement of the
image quality of the 3D reconstruction. As it is shown in
this paper, due to the edge-preserving filtering of the noise
in the projections the structural details in the reconstruction
are resolved better.

In the following section the theory of the bilateral filter is
briefly described. For the application of the noise filter the
Gaussian noise is simulated and added to the projections. In
section III the criteria for the image quality evaluation are de-
scribed. The reconstructions from noiseless, noise affected and
filtered projections are compared by means of the calculation
of the noise standard deviation followed by the comparison of
the standard deviation to mean ratio. These results are shown
in section IV. Additionally the comparison of bilateral filter
and median filter is presented in section IV. Section V contains
the conclusion.

II. BILATERAL FILTER

The denotation bilateral filtering suggests the combination
of domain and range filtering. The domain filter averages the
nearby pixel values and acts thereby as a low-pass filter. The
range filter stands for the nonlinear component and plays an
important part in edge preserving. This component averages
only the similar pixel values regardless of their position in the
filter window. In case the value of a pixel in the filter window
diverges from the value of the pixel in the center of the window
by a certain amount, the pixel is skipped. The shift-variant
filtering operation of the bilateral filter considering Gaussian
noise is given by:

φ̄(x) =
1

k(x)

∑
m∈F

φ(m) · s(φ(x), φ(m)) · c(x,m) . (1)

The expression m = (m,n) denotes the pixel coordinates in
the image to be filtered, x = (x, y) stands for the correspond-
ing coordinates in the filtered image. With these notations φ̄(x)
means the gray value of the filtered pixel and φ(m) identifies
the gray value of the spatially neighbouring pixels in the filter
window F .
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The following expressions (2) and (3) describe the pho-
tometric and the geometric components s(φ(x), φ(m)) and
c(x,m) respectively.

s(φ(x), φ(m)) = exp

(
−1

2

(
‖φ(x)− φ(m)‖

σph

)2
)
, (2)

c(x,m) = exp

(
−1

2

(
‖x−m‖
σc

)2
)
. (3)

The photometric component compares the gray value of the
center pixel with the gray values of the spatial neighbourhood
and computes the weight coefficients depending on the factor
σph. This factor adjusts the photometric component. The
similar gray values are averaged with higher weights than
dissimilar values in order to avoid any significant change of
the initial gray value of the pixel to be filtered.

The domain filter c(x,m) acts as a standard low-pass filter
in this case, the weights of which are reciprocally proportional
to the spatial distance of the center pixel to the neighbourhood.
The factor σc is selected in a way that blurring caused by low-
pass filtering is acceptable.

After normalization with

k(x) =
∑

m∈F
s(φ(x), φ(m)) · c(x,m) (4)

the range of the filtered images does not change significantly
due to the filtering.

The detailed description of the FPGA design of the bilateral
filter and test results can be found in [4].

III. IMAGE QUALITY EVALUATION

In Fig. 1 (b) one cross section of the volume reconstructed
from noiseless projections is shown. As this work is attended
to industrial application area the object under test is a carbon
fiber-reinforced plastic disk with 10 cm diameter. The end-to-
end holes are positioned at a distance of 3 cm from the centre
of the disk and have the following diameters: 0.6, 0.4, 0.3, 0.2,
0.16, 0.12, 0.1 cm. The angle between the holes is 15 degrees
in each case.

For the evaluation of the image quality of the projections
the well known Peak Signal to Noise Ratio PSNR is used.
PSNR is defined as follows:

MSE =
1

MN

∑
M

∑
N

[
φ(m,n)− φ̃(m,n)

]2
, (5)

PSNR [dB] = 20 · log10

(
φmax√

MSE

)
, (6)

where MSE denotes the mean squared error. The M×N image
with gray values φ(m,n) provides the reference for the
measurement of MSE. The gray values φ̃(m,n) originate from
the image to be compared. φmax denotes the maximum gray
value depending on the word length after the digitalization
of the images. Considering the quality of the noise filter

(a) (b)
Fig. 1. (a) Noiseless projection of the carbon disk with the measurement
area of the noise statistics in the projections, (b) σn measurement areas in
the cross section, reconstruction from the noiseless projections

PSNR describes the capability of the filter to suppress noise
regardless of the perceived visual quality of the filtered image.

In order to compare the cross sections of the 3D reconstruc-
tions the standard deviation of the noise is measured. In Fig. 1
(b) the areas are pointed out where the standard deviation of
the noise in the cross section of the volume is measured. As
the image noise in the reconstruction varies depending on the
distance from the centre, there are two measurement areas.
The formula for the calculation of the standard deviation is

σn =
1

L

√∑
L

(φl − µφ)
2
, (7)

where L equals the number of the pixels in the measurement
area and µφ indicates the mean gray value within the mea-
surement area.

IV. RESULTS

For the following tests a projection simulation tool is used,
which generates projections with 16 bits. The resolution of
the projections is 256×256 pixels, the pixel size is equivalent
to 0.8 mm. The x-ray source is simulated as a 100 kV
monoenergetic source. No scatter effects are simulated. Over
the range of 360 degrees 400 projections are simulated. The
reconstructed volume shows 255×255×230 voxels.

In Fig. 1 (a) the noiseless projection of the test object is
depicted. For the simulation of the noise signal Gaussian noise
with a standard deviation of σn = 0.0076 equivalent to 500
gray values at the digitalization of 16 bits is added to each
projection. In case the gray value of a noise affected pixel
exceeds the range of 16 bit values [0, 65535], the gray value
is clipped. Subsequently each projection is filtered with the
bilateral filter with the following settings: σph = 5σn and
σc = 1.

In the first row of Fig. 2 the noise affected projection and
the projection filtered with bilateral filter are shown. In the
second row there are according noise statistics calculated for
the measurement area shown in Fig. 1 (a). The histograms
confirm the reduction of the noise standard deviation after
noise filtering by a factor of three. The PSNR of the noise
affected projection equals 46.9 dB. After the noise reduction
with the bilateral filter the PSNR increases to 51.0 dB. In this
case the PSNR is measured across the whole image.
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(a) (b)

(c) (d)
Fig. 2. (a) Noise affected projection, (b) Projection filtered with bilateral
filter, (c) Statistics of the gray values in the noise affected projection, (d)
Statistics of the gray values in the projection filtered with bilateral filter

µφ,cent σn,cent σn/µφ,cent
noiseless 232 0.6 0.0026
add-noise 230 23 0.10

bilateral 5×5 233 11 0.05
median 3×3 232 14 0.06
median 5×5 233 8 0.03

TABLE I
MEASUREMENT RESULTS IN THE CENTRE OF THE CROSS SECTION

In Fig. 3 (a) the cross section of the reconstruction from the
noise affected projections can be seen. In Fig. 3 (b) the cross
section of the reconstruction from the projections filtered with
the bilateral filter is depicted. The reconstruction tool scales
the gray values of the voxels to the range of 8 bits. Due to
this scaling the following image quality analysis relates to the
maximum gray value 255.

The standard deviation of the noise is measured in two areas
marked in Fig. 1 (b). The results of this measurements are
summarized in the Tables I and II. The second column of
these Tables shows the mean gray value of the centered and
the marginal area of the cross sections respectively. The third
column contains the standard deviation of the noise in the
same areas. In both areas the standard deviation of the noise
is more than halved by means of the noise filtering of the

µφ,marg σn,marg σn/µφ,marg
noiseless 231 1.2 0.0052
add-noise 230 20 0.09

bilateral 5×5 232 9 0.04
median 3×3 232 12 0.05
median 5×5 232 7 0.03

TABLE II
MEASUREMENT RESULTS IN THE MARGINAL AREA OF THE CROSS

SECTION

(a) (b)

(c) (d)
Fig. 3. (a) Cross section of the reconstruction from the noise affected
projections, (b) Cross section of the reconstruction from the projections filtered
with bilateral filter, (c) Envelopes of the gray value statistics in the central
area of the cross sections, (d) Envelopes of the gray value statistics in the
marginal area of the cross sections

PSNR, dB
add-noise 24.39

bilateral 5×5 30.95
verification 30.84

median 3×3 28.74
median 5×5 31.80

TABLE III
PSNR OF THE CROSS SECTION

projections with the bilateral filter. To underline this statement
the fourth columns of the Tables I and II show the ratio σn/µφ
in both measurement areas respectively. The smaller this ratio
the fewer distortion the image shows. It can be seen in the
first rows of both Tables, that the standard deviation to mean
ratio of the noiseless reconstruction is approximately zero
and increases drastically in add-noise reconstruction. After the
noise filtering the ratio σn/µφ gets better in both measurement
areas of the reconstruction and is only one order of magnitude
worse than in the noiseless case. In Fig. 3 (c) and (d) the
envelopes of the gray value statistics of both measurement
areas are shown. These graphics demonstrate the shift of the
mean towards the mean in the noiseless reconstruction on the
one hand and the reduction of the standard deviation of the
gray values to less than one half on the other hand.

For the measurement of PSNR of the cross sections the
carbon disk shown in Fig. 3 (a) and (b) are taken. The cross
section in Fig. 1 (a) provides the reference. Here the PSNR
is measured across the whole cross section. The measurement
results are summerized in Table III.

A. Verification

In order to verify the effectiveness of the noise filtering in
the projections, different noise data is simulated. The noise
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Fig. 4. Cross section of the reconstruction from the noise affected projections
with reduced noise standard deviation for the verification

(a) (b)
Fig. 5. (a) Cross section of the reconstruction from the filtered projections
with median filter 3×3, (b) Cross section of the reconstruction from the filtered
projections with median filter 5×5

standard deviation is chosen in the way, that PSNR of the
respective reconstruction reach the PSNR of the reconstruction
from the projections filtered with bilateral filter. The cross
section of the carbon disk in Fig. 4 exhibits PSNR = 30.84
dB. To achieve these results the noise standard deviation
σn = 0.003 equivalent to 196 gray values is simulated. And
still the verification results are slightly inferior to the filtering
results. Thus via the noise filtering with the bilateral filter the
noise in the projections can be reduced to less than one half
of the initial value.

Fig. 6. Gray value profile of the holes in the cross section after the noise
filtering

B. Comparison with median filter

The best way to appreciate the performance of the bilateral
filter is to compare it to the standard filter, in case of CT
to median filter. On the one hand for the sake of fairness the
smallest window size 3×3 is chosen for median filter, because
the window size 5×5 is the smallest one for bilateral filter. On
the other hand it might be interesting to compare both filters
with the same window size 5×5. The according cross sections
are shown in Fig. 5. The results of the median filtering are
shown in Tables I, II and III.

As the bilateral filter preserves details in the image to be
filtered, this property propagates into the reconstruction. This
is proved by considering the holes in the carbon disk. In Fig. 6
the gray value profile of the holes is depicted. Although the
filtering with median filter 5×5 results in the best PSNR, small
holes almost disappear in the reconstruction. The smallest hole
shows only a third of the initial contrast after filtering with
median filter 5×5. The curves representing the gray value
profiles for the bilateral filter and the median filter 3×3 are
nearly congruent in the hole profile, but they diverge in the
homogeneous areas. The increase of PSNR along with the
shown contrast resolution demonstrate the suitability of the
bilateral filter over the median filter 3×3 and 5×5 for noise
filtering in the CT projections.

V. CONCLUSION

In this work the suitability of the bilateral filter for the noise
filtering in the CT projections is shown. The chosen noise
standard deviation of 500 gray values is extremely high, but
even in this case the application of the bilateral filter for noise
suppression in the projections shows satisfying results. The
noise standard deviation can be reduced to less than one half.
Due to the edge-preserving property of the bilateral filter the
quality of the reconstruction is even improved at the same
time, compared to the reconstruction from the noise affected
projections. In comparison with the median filter the bilateral
filter achieves also better results. Using the implementation
of the filter on an FPGA [4], real-time processing of the
projections is possible, so that there is no negative influence
on the reconstruction time.
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Abstract – If dose is to be appropriately managed for CT scanners, 
then a comprehensive, robust and objective image quality metric is 
needed to assure that low dose scans provide acceptable quality for 
the clinical task at hand. Current IQ measurements such as low 
contrast detectability (LCD), standard deviation, MTF, noise power 
spectrum, etc. provide technical measures of various specific image 
characteristics. These individual technical metrics, however, are not 
suited as a practical image quality gauge for the clinical environment.   
An image quality metric has been developed to characterize the 
detectability performance of a scanner over the full range of body 
sizes and scanner protocols including nonlinear and iterative 
reconstruction methods.  
 
 
Keywords— Low Contrast Detectability, CT, Image Quality, 
Contrast Measure, Low Dose 

I. INTRODUCTION 
While the focus of much of the recent research in CT 

imaging has been in radiation dose assessment and dose 
reduction, there has been little research and guidance provided 
for the assessment of image quality, especially in a clinical 
diagnostic setting. Obtaining the necessary diagnostic 
information for the patient is the primary goal of a CT scan.  
Thus the strategy to reduce dose is to determine the necessary 
image quality with a relevant quantitative measure and the 
subsequent dose needed to achieve it.  While technologies 
such as tube current modulation, adaptive collimation and 
others have been shown to reduce radiation dose, there is little 
objective evidence that these dose reduction methods have 
maintained image quality or that they have not affected 
observer performance in performing diagnostic tasks.  Current 
assessments of image quality (such as low contrast resolution 
or spatial resolution) are primarily subjectively assessed and 
while some objective assessment methods have been explored, 
they are not easily adaptable to clinical use and have not been 
demonstrated to provide any insight into observer 

performance.  Current assessments are typically performed at 
only one operating point, with only one phantom size, do not 
have any way to account for non-linear reconstruction 
processes and do not provide any information about electronic 
(system) noise, especially at reduced doses.  

In addition, differences in physical performance across 
scanners and even the lack of standardized descriptions of 
operating parameters make it difficult to establish uniform 
imaging protocols in multi-center, multi-scanner trials; this is 
even more difficult if there is some quantitative imaging 
measurement (e.g. tumor size, tumor density, etc.).  Therefore, 
the purpose of this research is to fundamentally improve the 
efficacy of contrast performance measurements for CT 
scanners and eliminate dependence on human observation.  
This will have implications for many aspects of both clinical 
practice and for the use of imaging in clinical trials, especially 
with respect to standardizing imaging performance across 
scanners. This may also be able to provide information to 
guide adjustments for different operating conditions such as 
patient size and reduced radiation dose levels. 

II. EXTENDED LOW CONTRAST DETECTABILITY (EXLCD) 
The ability of a CT system to differentiate a low-contrast 

object from its background is measured by its low contrast 
detectability (LCD). LCD is one of the key performance 
parameters for CT scanners.  Currently, the most widely used 
method for measuring LCD utilizes the low contrast module 
of the CATphan phantom and a standard head scan protocol to 
produce a single specification of LCD for the scanner.  This 
method typically measures low contrast performance in only a 
very limited range of dose and object size parameters.  In fact, 
this method is unable to measure low contrast performance for 
full-body, low dose protocols.  Also, because commercial 
scanners do not necessarily exhibit quantum noise limited 
behaviour over their entire range of operation, it cannot be 
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assumed that the results of the current method can be 
extrapolated to full-body, low dose protocols. 

The low contrast detectability (LCD) performance of a CT 
system is a critical performance characteristic, providing a 
measure of the scanner’s ability to produce high quality 
images at the lowest possible x-ray dose.    Because it is 
increasingly important to utilize lower dose protocols in 
present day CT scanners, it is now critical that LCD be 
measurable over the entire range of protocols and body sizes. 
 

A. Current LCD Method Definition 
The low-contrast resolution of a CT scanner is generally 

defined as the smallest object that can be visualized at a given 
contrast level and dose. The contrast level is usually specified 
as a percentage of the linear attenuation coefficient of water.  
A sample specification with the current method might be “4 
mm at 0.3% contrast for 10mm slice thickness at 30mGy skin 
dose.”  

The specification is currently made at a single protocol in 
one of two ways:  
1. Human observation – reconstructed images are viewed by 

one or more human observers to determine the smallest 
pin visible; 

2. Statistical method – an automated algorithm determines 
from a flat “water” image which pin size will be visible at 
0.3% contrast. 

In Table 1, some recently reported measurements from the 
major CT manufacturers have been collected.   

B. ExLCD Contrast Measure 
In order to extend the measurement of low contrast 

detectability, a new contrast measure M is introduced. 
 0 / ( ).M M cp  (1) 

where p is the smallest pin size, measured in millimeters, 
detectable at contrast level, c, measured in Hounsfield units 
(HU), where one Hounsfield unit corresponds to 0.1% of 
water attenuation and M0 is an arbitrary constant for bringing 
the measure into a convenient numerical range.  In this work, 
M0 = 6000 in order to map the best current contrast 
specification of 2mm at 0.3% to a contrast measure of 1000.  
For example, the specification from the first row of Table 1, 
“4 mm at 0.3% contrast for 10mm slice thickness at 10mGy 
skin dose,” would generate a contrast measure of 500, 

  6000 / (3)(4) 500.M    (2) 

C. ExLCD Flux Index Definition 
Commercial CT scanners typically operate over a wide 

range of protocols and patient sizes, each of which can have 
distinct contrast characteristics.  Protocol parameters that can 
impact contrast include (1) scan time, (2) tube current (mA), 
(3) slice thickness, (4) object (patient) diameter, (5) tube 
voltage (kVp) and (6) x-ray filter. Also, contrast is 
significantly impacted by non-linear reconstruction methods 
as well as the reconstruction pixel size and reconstruction 
filter.   

A relative flux index that incorporates some of these 
parameters is as follows. 

 
*

.** * objDiam attWater
refDiam attWater

eFluxIndex mAs sliceThick e

  (3) 

For practical combinations of these parameters, the range of 
FluxIndex is approximately [0.1, 7,000.0].  Refer again to the 
first row of Table 1 for an example of a current LCD 
specification: “4mm at 0.3% for 10mm slice at 90mAs.”  
Since this specification relates to the 20 cm CATphan, the 
FluxIndex would be 900.  

TABLE 1: LOW CONTRAST DETECTABILITY SPECIFICATIONS FOR 4 MAJOR 
SCANNER MANUFACTURERS [8] 

 

III. THE EXLCD METHOD  
In order to address the problems with the current LCD 

methods, the ExLCD contrast performance curve is 
introduced.  It is based on the assumption that equations (1) 
and (3) apply over the full range of scanning protocols. By 
scanning a phantom under a selection of protocols, the 
contrast measure can be determined as a function of relative 
flux. It can be shown that the contrast performance 
measurements have a dependence on flux which is directly 
proportional to the dependence of the signal to noise ratio for 
the scanner. 

D. ExLCD Components 
The ExLCD method can be partitioned into four key 

components: (1) a custom ExLCD phantom containing 
various contrast/diameter cross-sections, (2) the set of scan 
protocols and image slices used for ExLCD measurement, (3) 
the visibility determination, (4) a contrast performance curve 
generator. 

1) Phantom Design:  The details of the phantom design will 
not be discussed here. The design philosophy is initially 
similar to that of the CATPhan, which has a range of pin sizes 
at various contrast levels.  Differences are the subsets of these 
pins will have contrast measures uniformly distributed on a 
log scale and a range of phantom diameters will be used. 

2) Scan Protocols: A collection of 20 distinct protocol 
samples were chosen to be uniformly distributed on the 
logarithmic relative flux axis 

3) Detectability Determination: Detectability determination 
is the process of analyzing a reconstructed image and 
determining the smallest pin detectable at a given confidence 
level for one or more of the contrast sets.  The ExLCD 
analysis method includes one or more of the methods listed 
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below along with the capability to incorporate true measured 
contrast.   

Single or multiple human observer(s) [1,2] 
Statistical method [3] 
Rose criterion [4] 
Matched filter methods [5,6,7] 
 
4) Curve Generator: As described above, the output of any 

of the visibility methods applied to an image slice is an 
ordered pair, [relative flux, contrast measure], corresponding 
to the smallest pins that are “visible” for any applicable 
contrast level. The visibility method is applied to images 
obtained with each sample protocol. The resulting collection 
of ordered pairs can be plotted on a log-log scale.  For 
example, see Figures 1-2. These plots also illustrate the 
Contrast Performance Curve generated by a numerical fit to 
the data. 

Sample contrast measurements and the corresponding 
contrast performance curve are shown in Figure 1. 

 
Fig. 1   Blue “+” symbols show contrast measurement values computed by the 
ExLCD algorithm.  Green circle identifies single measurement representing 
current LCD method.  Orange curve illustrates the derived ExLCD Contrast 
Performance Curve.  

E. ExLCD vs. Current LCD Methods 
1) Multiple vs. Single Protocol Characterization: A single 

LCD measurement, as illustrated by the “+” inside the green 
circle in Figure 1 above, is a very limited characterization of a 
CT scanner. Extending the demonstration to the comparison 
of two scanners, the graph, in Figure 2 below, shows ExLCD 
contrast measurements and Contrast Performance Curves for 
two different simulated CT scanners.  In Figure 2, the contrast 
measures derived from the data in Table 1 have been located 
on a graph of contrast measure vs. relative flux. From Figure 
2, it’s clearly evident that this use of single protocol contrast 
measurements cannot reliably compare scanners. 

 

 
Fig. 2. Low Contrast Detectability specifications for 4 major scanner 
manufacturers mapped onto an ExLCD graph based on ExLCD Contrast 
Measure and Relative Flux values. 

2) Small Pin Detection: An additional problem is that for 
conventional detectability methods that are based only on a 
noise analysis such as the statistical method, noise power 
spectrum, simple-pixel standard deviation or matched filter 
standard deviation all can over estimate the performance of a 
reconstruction process that alters the contrast of the test 
object.  Reconstruction processes that limit spatial bandwidth 
of both noise and object will not account for changes in the 
assumed object. For example, assume that a small pin in an 
LCD test phantom is exactly a cylinder with a 2 mm diameter 
and a contrast of 0.3 %.  If perfectly reconstructed, image 
pixels within the area of the pin will have an average contrast 
of 0.3% and all pixels outside this region will be 0%.  
However the MTF of the system will blur the pin and spread 
some of its contrast into pixels beyond the original geometric 
boundary.  This results in a reduction in average contrast 
within the pin region.  

3) Human Observer Inconsitency: Human observer 
variation will produce inconsistencies in the identification of 
smallest visible pins [11].  This can introduce inaccuracies 
into the single protocol contrast measurement which are 
compounded when the contrast performance is extrapolated to 
other flux ranges. 

 

IV. NUMERICAL EXPERIMENTS 
The key concepts of ExLCD were tested using simulations.  

In order to assess the value of the ExLCD process, a variety of 
scanner configurations were simulated.  A full-featured fan-
beam CT scan simulator was used to generate CT 
measurement data.  The fan-beam simulator included the 
capability to simulate both quantum and electronic noise.  For 
these experiments, only quantum and electronic noise were 
varied with the remaining configuration parameters fixed. 
Seven parameter pairs for quantum and electronic noise were 
simulated. 
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For each of seven parameter sets, the CT scan simulator 
was used to produce raw data for each of 44 applicable 
phantom cross-sections representing relative flux values in the 
range [0.1,7000].  Page limitations preclude a complete listing 
here of the numerical experiments and the display of each of 
the individual results. 

 
Three detectability methods were applied to the phantom 

images created by the reconstruction: (1) human observers, (2) 
Rose and (3) the statistical method.  Seven Contrast 
Performance Curves are produced for each of the detectability 
methods.  The Contrast Performance Curve obtained using a 
Rose detectability method for a simulated scanner is shown in 
Figure 3 along with the contrast measures obtained from four 
human observers.  

 Fig. 3 An ExLCD Contrast Performance Curve for one of the simulated 
scanners shown with the contrast measures obtained from four human 
observers.  Each color corresponds to an individual observer. 

V. CONCLUSIONS 
The following independent statements are logical 

conclusions from the work described here:   
1) The ExLCD process can successfully characterize the 

contrast performance of a CT scanner over the entire flux 
range.  It should be adaptable to other radiography 
applications. 

2) A single LCD measurement is inaccurate even in 
estimating the contrast gain of a scanner in the higher flux 
regions. 

3) A single LCD measurement provides no information 
about the contrast performance of a scanner in the lower flux 

regions including (1) body scans at lower dose, (2) scans for a 
large body, (3) fast scans. 

4) With the ExLCD process, human observer visibility 
determination is much less consistent than either of the 
automatic methods: statistical and Rose.  In fact, observer 
visibility determination is not accurate enough to differentiate 
the contrast performance among typical commercial scanners. 

5) With the ExLCD process, the Rose method is much 
closer to the human observer results than the statistical 
method.   
 

VI. FUTURE DIRECTIONS 
This work is a preliminary exploration of the ExLCD concept. 
In ongoing work, we will validate and evolve the ExLCD 
concept.  In particular, simulations which include non-linear 
and iterative reconstruction methods will be performed.  The 
ExLCD concept will be applied to data acquired from real 
scanners.  Finally, the ExLCD detectability predictions will be 
correlated with clinical image quality studies. 
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Abstract— Purpose: Low contrast sensitivity of CT scanners is 
regularly assessed by (subjective) scoring of low contrast 
detectability within CT images of a phantom. Subjective rating of 
low contrast visibility might be biased since low contrast objects 
are arranged in known fixed patterns. The purpose of this study 
was to develop a software tool for automated objective low 
contrast detectability. 

Methods and Materials: Images of the low contrast module of 
the Catphan 600 phantom were used for the evaluations. The 
phantom contains three series of low contrast patterns (size 2 -15 
mm; contrast 0.3, 0.5, and 1.0%). The software method offered 
automated determination of low contrast detectability using a 
NPWE model observer. As a proof of concept, influence of kV, 
mAs and reconstruction filter on image quality was investigated. 

Results: Initial results show that effects of kV, mAs and 
reconstruction filter on image quality are clearly illustrated by 
the model observer.

Conclusion: We developed an automated method to investigate 
image quality objectively. As a first step, low contrast 
detectability as a function of both aquisition and reconstruction 
parameter settings was successfully investigated. In future work, 
this method could play a role in evaluation of image 
reconstruction algorithms, dose reduction strategies and novel 
CT technologies.

I. INTRODUCTION

valuating image quality is essential when investigating 
new acquisition protocols or new technical developments. 

A first approach is to look at individual physical properties of 
the image such as image contrast, resolution and noise. 
Together these aspects play an important role in detection, 
classification and estimation tasks in medical imaging. 

Following on physical measurements, receiver operating 
characteristics (ROC) studies involving human observers, are 
a well known method of evaluating the impact of a particular 
image manipulation on clinical diagnosis. However, ROC 
studies may become time consuming and costly because they 
require a large number of human observations and a 
significant number of observers. Moreover, the number of 
possible conditions to investigate can be large.

As an alternative to human observers, computer-model 
observers can be considered. These are algorithms that attempt

to predict human visual performance in noisy images. These 
models seem very useful in investigating numerous different 
conditions [1].

 To more clearly demonstrate the impact of parameter 
settings and new technology on the CT image quality we 
developed an automated method to investigate low contrast 
detectability using a model observer. The difference between 
low contrast objects and background is so small that noise, 
resolution and contrast are significant factors in this test. The 
model observer is developed in Matlab and currently 
dedicated for detection of low contrast objects in the Catphan 
phantom. As a starting point, we chose the non-prewhitening 
matched filter with eye filter (NPWE model; note that 
different models may be implemented in future). The NPWE 
model uses information about the signal but also takes into 
account the differential human visual sensitivity to different 
spatial frequencies. The NPWE model therefore uses a 
template that matches the signal filtered by a human visual 
response function. The NPWE model has been able to predict 
human visual performance with respect to different 
backgrounds (including real anatomic backgrounds)  [1, 2].

The method we propose could be helpful in investigating 
image reconstruction algorithms, dose reduction strategies and 
novel CT technologies. Also, it could enable fair comparisons 
between scanners of different vendors especially when image 
quality as a function of dose could be established. 

II. MATERIALS AND METHODS

A. Catphan Phantom

In this study the Catphan 600 Phantom (Phantom 
Laboratories, New York) was used. This phantom is 
constructed from modules that fit into a durable 20cm 
housing. The CTP515 module (positioned in the Catphan 600 
phantom) consists of a series of 40 mm cylindrical rods of 
various diameters and three contrast levels to measure low 
contrast performance (see Fig. 1). Also subslice low contrast 
targets (truncated cylinders) have been included in this 
module. 

In this study the phantom was always aligned with the axis 
of rotation (z axis). Only the outer 40 mm long objects with 
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the various diameters (i.e., 2, 3, 4, 5, 6, 7, 8, 9, and 15  mm) 
were chosen for this study. Our study will involve all three 
contrast series (i.e. 0.3, 0.5 and 1.0%) but the results shown in 
this paper are solely based on the highest low contrast series of 
1%.

Fig. 1. A constructed 38 mm CT slice of the CTP515 module.

B. Image Acquisition and Reconstruction

Data acquisition concerning the phantom was performed using 
a 16-detector row CT scanner (Aquilion 16, Toshiba, Japan) in 
combination with the following parameters: beam collimation 
of 16x0.5 mm, tube voltage ranging from 80 - 135 kV, tube 
charge ranging from 25 mAs – 200 mAs. Scan field of view 
was 400 mm in all
 acquisitions. All images were reconstructed at 0.5 mm slice 
thickness and 0.5 mm reconstruction interval. The images 
were reconstructed with FC12 (soft convolution kernel; body), 
FC50 (soft convolution kernel; lung), FC53 (sharp 
convolution kernel; lung) and FC81 (sharp convolution kernel; 
bone). Table I gives an overview of the acquisition and 
reconstruction parameters used.

TABLE I
OVERVIEW OF THE ACQUISITION AND 

RECONSTRUCTION PARAMETERS
Series Tube 

voltage
(kV)

Tube 
current
(mAs)

Recon.
filter

Slice 
Thickness 
(mm)

1 80 100 FC12 0.5
2 100 100 FC12 0.5
3 135 100 FC12 0.5
4 120 200 FC12 0.5
5 120 50 FC12 0.5
6 120 25 FC12 0.5
7 120 100 FC81 0.5
8 120 100 FC53 0.5
9 120 100 FC50 0.5

C. Processing of the Phantom Image Data

Detecting the Phantom and the Low Contrast Module
The phantom was detected by thresholding using a fixed 
threshold. Detection of the low contrast module within the 

phantom data was achieved based on knowledge of the CT 
value of the low contrast module and the presence of low 
contrast objects in the module in contrast to high contrast 
inserts in other modules. 

Creating the Mask for Low Contrast Objects
The model observer uses templates for correlating the low 
contrast signals with their expected signal profiles (see section 
D). Templates with respect to each low contrast object were
estimated using a constructed 38 mm slice (with consequently 
low noise due to the significant slice thickness) of the low 
contrast module in combination with the knowledge of the 
diameters of the objects. The highest low contrast series were 
used for this purpose. The location of the corresponding object 
templates was estimated by maximizing the signal within each 
object template (when measured in the corresponding area in 
the 38 mm slice). In this way a series of templates was 
obtained corresponding to the highest low contrast series. The 
remaining two series were obtained by rotating the estimated 
pattern respectively over an angle of 120° and 240°, resulting 
in the mask shown in Fig. 2.

      
Fig. 2. The mask, consisiting of templates with respect to each low contrast 
object.

Scaling of the Mask
To apply the mask optimally to the different acquisition and 
reconstruction series from Table I, the mask was scaled and 
positioned based on the size and location of the phantom in the 
images. An automatically detected special high contrast 
reference object in the outer rim of the phantom was used to 
estimate the orientation of the phantom in the images. An 
angle of rotation was determined successively and applied to 
the mask to optimally fit the mask to the images. 

D. NPWE Model

The non-prewhitening matched-filter observer with an eye-
filter (NPWE) is a mathematical model that has been shown to 
be similar to human observers for detection tasks in the 
presence of low-pass noise [3]. Its strategy consists of 
correlating the image with the shape of the expected signal 
profile (of background and signal respectively) filtered by the 
visual-response function. In our experiments, the location of 
each template in the mask was separately optimized by 
shifting the template one pixel position in a 3x3 pixel 
environment and maximizing the correlation measure (signal 
location is uncertain case).
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In a detection task, the model reaches a decision by 
comparing test statistics T1 (test for background) and T2 (test 
for signal). The test statistics are obtained by cross-correlation 
between the expected signal and the image [3]. The eye filter 
used in the model was E(f) = fe−bf, with b chosen such that 
E(f) peaked at 4 cycles per degree. The eye filter is radially 
symmetric, and f is spatial frequency. In the experiments, a 
fixed viewing distance of 500 mm from the monitor was 
assumed [4]. 

From the distribution of test statistics, one can compute a 
discrimination index d′ [3]:
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Here <·> is the mean and σ(·) is the standard deviation of
the respective distributions. The distributions are derived by 
performing cross-correlations in 76 consecutive slices of  0.5 
mm slice thickness (for each series in Table I). This index can 
be used as a measure of detection performance. The 
discrimination index can be determined as a function of the 
low contrast signal energy (SE), as is described in [3] (i.e. the 
squared expected signal value integrated over all pixels in the 
observer template).

III. RESULTS

Results comprising the higher (1%) low contrast series are 
shown in this section. In Fig. 3 the results with respect to the 
influence of kV is illustrated. The decrease in kV (with 
constant mAs) results in decreased low contrast detectability 
(lower d’ values) according to the NPWE model. This can be 
explained by increased quantum noise using lower kV’s. Note 
that the data points in the graphs correspond with the different
object sizes in the highest low contrast series. Note also that 
signal energy increases with object size resulting in increased 
object detectability.

Fig. 3. Discrimination index d’ as a function of signal energy for different 
kV’s and constant tube charge (100 mAs).

Fig. 4 illustrates the influence of mAs (with constant kV). As 
can be expected, lower mAs values deteriorate the low 
contrast detecability due to decreasing signal-to-noise ratios. 

Fig. 4. Discrimination index d’ as a function of signal energy for different 
tube charges and 120 kV tube voltage.

Fig. 5 finally, gives an impression of reconstruction filter 
influence.  The soft filter gives the best performance. This 
filter suppresses the high frequencies (noise in these images) 
which strengthens the visibility of low contrast objects.

Fig. 5. Discrimination index d’ as a function of signal energy for different 
reconstruction filters (120 kV and 100 mAs in all cases).

IV. CONCLUSION

In conclusion, we have validated a method for investigating 
low contrast detectability in CT images The proposed method 
can be considered a reasonable aid for investigating trends 
regarding diagnostic image quality as a function of dose 
reduction, acquisition and reconstruction parameter settings 
and new CT technologies. 
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ABSTRACT

A great number of image reconstruction algorithms, based on
analytical filtered backprojection, are implemented for X-ray
Computed Tomography (CT) [1, 3]. The limits of these meth-
ods appear when the number of projections is small, and/or
not equidistributed around the object. In this specific context,
iterative algebraic methods are implemented. A great num-
ber of them are mainly based on least square criterion. Re-
cently, we proposed a regularized version based on Bayesian
estimation approach. The main problem that appears when
using such methods as well as any iterative algebraic meth-
ods is the computation time and especially for projection and
backprojection steps. In this paper, first we show how we
implemented some main steps of such algorithems which are
the forward projection and backward backprojection steps on
GPU hardware, and then we show some results on real ap-
plication of the 3D tomographic reconstruction of metallic
foams from a small number of projections. Through this ap-
plication, we also show the good quality of results as well as a
significant speed up of the computation with GPU implemen-
tation.

Index Terms— Computed Tomograhy (CT), Iterative 3D
reconstruction, Bayesian estimation, GPU implementation

1. INTRODUCTION

The inverse problem we solve is to reconstruct the object f
from the projection data g collected by a cone beam 3D CT.
The link between f and g can be expressed as :

g = Hf + ε (1)

where H is the forward projection matrix operator modeling
the acquisition system and ε represents all the errors (model-
ing and measurement noise). The element Hij represents the
participation of the j pixel in the i data point.

In this discretized presentation of the CT forward prob-
lem, the backprojection (BP) solution can be expressed
as f̂BP = Htg where Ht is the transpose of H and

E-mail : nicolas.gac@lss.supelec.fr, alexandre.vabre@cea.fr, dja-
fari@lss.supelec.fr

the filtered backprojection (FBP) method which is also
equivalent to the Least squares (LS) solution can be ex-
pressed as f̂FBP = (HtH)−1Htg. The LS solution
f̂LS = arg minf

{
Q(f) = ‖g −Hf‖2

}
as well as the

quadratic regularization (QR) solution

f̂QR = arg min
f

{
J(f) = ‖g −Hf‖2 + λ‖Df‖2

}
(2)

can be obtained by a gradient based optimization algorithm
which can be described as follows:{

f (0) = Htg
f (i+1) = f (i) + α

[
Ht(g −Hf (i)) + λDtDf (i)

]
(3)

where α is a fixed, variable or computed optimally step size
and (i) is the iteration number. Looking at this iterative al-
gorithm, we can distinguish, at each iteration the following
operations:

1. Forward projection operation: ĝ = Hf̂

2. Computation of the residuals: δg = g − ĝ

3. Backprojection operation of the residual: δf1 = Htδg

4. Computation of the regularization or a priori term:
δf2 = λDtDf̂

5. Updating of the solution for the next iteration:
f (i+1) = f (i) + α(δf1 + δf2)

As we can see the implementation of such iterative algorithm
as well as any other more sophisticated algorithm such as the
Bayesian estimation approach we propose needs these oper-
ations. The two main steps are the steps 1 and 3. As we
will see later, we implemented these two steps using GPU.
So, one of the main contribution of this paper is the presenta-
tion of this implementations and their relative performances.
The second contribution of this paper is adaptation of a par-
ticular Bayesian estimation approach with appropriate prior
modelling which is particularly adapted for our application
which is related to Non Destructive Testing (NDT) applica-
tion.
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In the following, first, we present the basic ideas of our
Bayesian estimation approach and in particular the prior
model we proposed and used. Then, we present the main
steps of the resulting Joint Reconstruction-Segmentation-
Characterization Algorithm (JRSCA) we developped. Then,
we detail as much as possible the implementation on GPU
parts and their performances, and finally, we show the 3D
reconstruction results obtained for our application and we
conclude on this paper.

1.1. Bayesian method

The proposed Bayesian method lies on a prior model for the
object f = {f(r), r ∈ R} where r = (x, y, z) represents a
voxel position. This model considers that the object f(r) is
composed of a finite number K of materials; all voxels of the
same material are grouped in compact regionsRk, labeled by
a hidden variable z(r) = k, k = 1, · · · ,K. We then have
Rk = {r : z(r) = k}. To translate the homogeneity in each
class of matierial, we use:

p(f(r)|z(r) = k,mk, vk) = N (mk, vk) (4)

and to translate the desir that all the voxels in a given class
be grouped in compact regions, we use a Potts-Markov model
for z = {z(r), r ∈ R:

p(z) ∝ exp

∑
r∈R

∑
k

αkδ(z(r)− k) + γ
∑

r′∈V(r)

δ(z(r)− z(r′))


(5)

where V(r) means the neighborhood of r and {αk, k =
1, · · · ,K} and γ are the Potts model parameters. The pa-
rameters mk, vk and also standard variation of the noise
vε are called the hyperparameters θ = {(mk, vk, αk), k =
1, · · · ,K; vε}. With this prior model and a centered uncor-
related Gaussian model for the noise, we can obtain the ex-
pression of all the probability laws p(g|f , vε), p(f |z,α,v),
p(z|γ,α) and the joint a posteriori law p(f , z,θ|g) and all
the conditionals p(f |z,θ, g), p(z|f ,θ, g) and p(θ|f , z, g)
which are needed to estimate jointly the object f , the image
of z which will show the segmented and classified volume
and the parameters θ which charcterize all the classes.

The iterative algorithm structure is then constituted of
three main steps, as follows:

• Reconstruction step: Updating f by computing
f̂ (i+1) = arg maxf {p(f |z,θ, g)}. This is done by
using a gradient type optimization algorithm.

• Segmentation step: Updating z by generating a sam-
ple from p(z|f ,θ, g). This needs a sampling algorithm
from a Potts-Markov model.

• Characterization step: Updating the hyperparameters
using p(θ|f , z, g). This step can be done either ana-
lytically or by sampling from known probability laws
such as Gaussians or Inverse Gamma.

More details about this method can be found in [5].

2. ALGORITHM SPEED UP

2.1. Introduction

In this paper, we focus more on a hardware speed up of some
of these steps. A preliminary study has been conducted to es-
timate which hardware architecture is the more appropriate to
each calculation step: Cell [6], FPGA, CPU, cluster of PC’s,
graphic processing units [7, 8]. And so from the literature [9],
for gradient descent (95 % of the calculation time), graphic
processors such as GPU seem well adapted. The convergence
of the algorithm has to be warranted for the different chosen
parameters, such as: N (local number of iteration for gradient
descent), M (segmentation number of iterations) and I (global
number of iterations). The proposed method includes not only
a reconstruction of the CT data but also a segmentation of the
volume into classes. Recent works have been carried out on
similar approaches for binary cases using discrete tomogra-
phy [10]. Our approach allows to have any number of mate-
rials that needed, and also we associate a probability law to
belong to a given class [5]. Priors are also introduced on the
voxel class estimation according to their neighborhood.

2.2. Implementation of projector and backprojector

For the iterative step of gradient descent, the two main con-
suming time operations are projection (Hf ) and backprojec-
tion ( Htδg) which are used to estimate a convergence crite-
rion and its gradient. These two operations represent 95 % of
the computing time.

The follow up of the work aims at speeding up these two
steps. GPU hardware, since 2006 is one of the most used tool
inside research community. Both simplicity in implementa-
tion and performance improvements have imposed scientic
community to migrate to such a tool. Recent improvements
from NVidia have allowed to dispose of CUDA, this devel-
oping environment allows to design operating software with
high computing performances.

In order to compute the two matrix operations (Hf and
Htδg) without the too expensive memory use of H=(hij) (1
To is needed to store H for a 20483 reconstruction), projec-
tion and backprojection geometric operators are widely used.
This operators compute in line the coefficient hij , instead of
reading a matrix H stored in memory. Differents kinds of pro-
jection and backprojection algorithms can be used [11, 12].

For each operator, we choose the one which enables the
best implementation on Nvidia GPUs with CUDA. As a con-
sequence, our projection/backprojection pair is unmatched.
Thus each operator defines a different matrix H: Hp for pro-
jection and Hbp for backprojection. Use of unmatched back-
projection/projection pairs is widely used. Indeed, effect on
convergence is in pratice not penalising during the first itera-
tions [13]. Main difference on backprojection and projection
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algorithm is the main loop of computation : for backprojec-
tion, the loop is on voxels (voxel-driven) and for projection it
is on X rays (ray-driven).

2.3. Backprojection

Backprojection algorithm used is a voxel-driven (main com-
putation loop on voxels) with a bi-linear interpolation done
on detector pixels. Loops are ordered in manner to exploit as
much as possible the spatial and temporal locality of memory
access as described in [9]. In CUDA parallelization scheme,
one thread is responsible to one voxel reconstruction. Mem-
ory accesses to the 2D projection of the volume is done via
the 2D texture available on GPUs which allows a cache ac-
cess to global memory and a hardwired bi-linear interpola-
tion. Standard software optimizations techniques have been
carefully used : pre-computation stored on constant cache-
memory, incremental computation used as much as possible
and loop unrolling.

2.4. Projection

Projection algorithm used is a ray-driven (main computation
loop on rays) with a tri-linear interpolation done on volume
voxels. In CUDA parallelization scheme, one thread is re-
sponsible to integrate the 3D volume along one X-ray. The
volume integration for a ray is done simply by sampling reg-
ularly the volume along the ray. Memory accesses to the
3D volume is done via the 3D texture available on GPUs
which allows a cache access to global memory and a hard-
wired tri-linear interpolation. Standard software optimization
techniques have been used for projection as well.

3. REAL DATA RECONSTRUCTION

3.1. Metallic foams

Solid foams are a class of materials with a complex behavior
related to the properties of the constitutive material, the ge-
ometry and the topology of the material distribution. These
materials present a very high porosity, and are thus very light,
but nevertheless very resistant due to a good distribution and
architecture of matter. The most known examples of such ma-
terials are bone and wood, or also coral and sponge.

Metallic foams are very recent materials. The application
field of these materials is very large: they can be used as de-
formation absorbers in mechanical engineering or fluid dis-
tributors for many applications such as thermal exchangers,
fuel cells and electrolysers. A strong need in modeling tools
as reliable as possible is necessary to make clearer the behav-
ior of these materials and to design optimal foams for desired
application [14]. It is necessary to estimate the mechanisms
that control their deformations, their durability versus time or
stresses to employ them. It is also necessary to study their
behavior versus mass and thermal transfers to address fluid

flow applications. In this context, our work is focused on col-
lecting basic knowledge on fluid two-phase flows in metallic
foams [15]. A scientific community works on flows in porous
media for geology or oil extraction. Our idea is to implement
the modelling methods developed in the context of fractured
geologic medias and adapt them to the metallic foam struc-
tures [16].

However, in order to obtain reliable results from these
modelling methods, it is necessary to obtain of a thin topology
and geometry foam structures. For topology characterization,
the pore size distribution and the specific surfaces are funda-
mental parameters, i.e. the normalized surface of the foam. A
high spatial resolution of three-dimensional structure of the
foam (in the magnitude of 5 m) is required for geometry char-
acterization [17]. In the follow-up, we present our studies on
water kinetics in open-cell nickel foams using x-ray microto-
mography. The experiments are conducted on a small sample
size (1 mm3 foam) to estimate the thin geometry and model
the water behavior at a scale of few pores.

Data set is made of 96 projections on the 2562 plane de-
tector. The volume is reconstructed inside the cylindric field
of view of the X ray tomograph. Thus, we reconstruct 256 (z
dimension) * Π · 1282 (x,y dimensions) voxels.

3.2. Reconstruction time

We have used a Nvidia GTX 295 to reconstruct the metal-
lic foam. Only one GPU is used here, no multi-GPU imple-
mentation has been done. Reconstruction time are greatly pe-
nalised by memory transfer between CPU and GPU.

The purpose of this work is not to evaluate the accelera-
tion factor obtained on GPU (see [9, 6] for time comparaison
on CPU and GPU). But compared to the former reconstruc-
tion ”C++” software used in the CEA lab , we reach about 100
acceleration factor. Previously a 100 iteration reconstruction
took days and now it takes hours.

Operator Time
Projector 755 ms (128 ms for memory transfer)
Backprojector 234 ms (133 ms for memory transfer)

Table 1. Reconstruction time on a GTX 295 (96 ∗ 2562 data)

3.3. Foams reconstructed

As first results, we present here the foam reconstructed with a
non Bayesian iterative algorithm and with our Bayesian itera-
tive algorithm. As we can observe on figure 1, while standard
algorithm like FDK (a) or an iterative quadratic regulariza-
tion method (b) does not suceed to reconstruct the water in-
side the metallic foam, our method suceeds to reconstrut it (c),
and provide a segmentation image (d) . The used prior model
which suppose that the reconstructed object is constituted of
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N compact regionsRk,, is well adapted to this context of data
set.

(a) (b)

(c) (d)

Fig. 1. Foam reconstructed : (a) Slice reconstructed with
a FDK method (b) Slice reconstructed with a non bayesian
method (standard gradient descent after 50 iterations); (c)
Slice recontructed with our method (after 50 iterations); (d)
Segmentation obtained during iterative reconstruction

4. CONCLUSION AND PERSPECTIVES

We have presented an original method based on a Bayesian
statistical method for 3D tomographic reconstructions. The
main interest is to apply it to a context of non-consistent data
sets, for example with a small number of projections. We have
shown a good quality of our first results on an experimental
data set with low contrasted regions (air/water as compared to
nickel) acquired on the CT set-up of our lab and a signicant
speed up of the calculation with GPU implementation.

Both backprojection and projection steps were imple-
mented on GPU. The obtained performance for the global
reconstruction time is in the magnitude of 100. Hovewer,
performance of our projector can be still improved. In this
goal, a Joseph projector implemented also on GPU, would be
compared in term of time and qualiy of reconstruction. Our
futur work will be focusing on the study of the effect of the

unmatched projector/backprojector pair on the reconstruction
process. For this purpose, a matched voxel-driven projector
has been implemented on CPU.

Our futur goal is to reconstruct 10243 real data acquired
on the new CT set-up of the lab (10242 detector pixels). We
are currently working on a multi-GPU implementation in or-
der to handle such large data sets. GPU implementations
of computation costly steps as 3D convolution, segmentation
step would help to speed-up even more the reconstruction pro-
cess.
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Abstract�Synhrotron radiation miro-CT (SR-µCT) is auseful tool for speimen studies. However, radiation dam-age to biology speimens an be an obstale for obtaininghigh-quality data. The radiation damage an be minimizedthrough the use of a onsiderably redued number of pro-jetion views. Using experimental data olleted for a num-ber of speimens, inluding a sea urhin spine speimen,we investigate image reonstrution from sparse projetiondata by use of arefully designed algorithms, inluding thetotal-variation (TV) algorithm. Results of our studies indi-ate that, from muh redued data, the TV algorithm anyield images that omparable to those obtained from fulldata by use of the existing algorithm in urrent SR-µCTstudies, suggesting that the TV algorithm may �nd broadappliations in SR-µCT.I IntrodutionSynhrotron radiation miro-CT (SR-µCT) is a usefultool in study of a speimen's struture preserved in its nat-ural state, thus preventing struture deformation or de-strution otherwise enountered in its histologi �xationand setioning. In omparison with other non-destrutiveinspetion tehniques, suh as magneti resonane imag-ing (MRI), miro-CT, and onfoal mirosopy, SR-µCTis apable of imaging millimeter-sized samples with miron-sale resolution. In SR-µCT, a synhrotron soure deliversintense X-ray over a wide energy spetrum, ranging froma few eV to a few-hundred keV. With an X-ray monohro-mator, X-ray with a narrow energy band an be seletedfor illuminating the imaged speimen. Beause SR-µCTuses virtually monohromati X-ray, it is free of beamhardening e�et.Despite the fat that SR-µCT possesses unique, desir-able properties suh as monohromati X-ray energy, is-sues exist that would a�et its adequate appliations tosome imaging tasks. An issue onerns the large numberof projetion views that are required for yielding imageswithout signi�ant artifats reonstruted by use of exist-ing algorithms, suh as the �ltered-bak projetion (FBP)algorithm. Suh a large number of projetion measure-ments not only inreases the imaging time but also, moreimportantly, may indue serious radiation damage to thespeimen. This is a partiularly important issue when awet biologial speimen is imaged, beause the high �ux ofsynhrotron X-ray radiation an indue signi�ant inter-

nal struture deformation within the wet speimen. Onepossible approah to reduing imaging time and speimenstrutural deformation in SR-µCT imaging is to dereasethe number of projetion views.In this work, we investigate image reonstrution in SR-
µCT and demonstrate images without signi�ant artifatsan be reonstruted by use of arefully designed algo-rithms from data aquired at a number of projetion viewssigni�antly lower than that urrently used in a typialSR-µCT imaging experiment. Also, it is not unommonthat, beause of physial and hardware onstraints, dataan be aquired over a limited angular range in SR-µCTimaging experiments. Therefore, we will also investigateimage reonstrution from SR-µCT data olleted over anangular range less that 180◦.II SR-µCT system and imaging experimentsIn the work, we use the SR-µCT system at the Ad-vaned Photon Soure (APS) at Argonne National Labo-ratory (ANL) to ollet data from a sample of sea urhinspine. The SR-µCT system, as shown in 1, has sevendegrees of motion freedom that allow one to ontrol theorientation of the rotation axis and the sample position.The detetor omponent is omposed of a sintillator, amirosope lens, and a Coolsnap 2K×2K CCD amerawith a pixel size of 7.5 µm. The sintillator onverts X-ray into visible lights that are subsequently piked up bythe mirosope lens and then reorded as a magni�ed pro-jetion image on the CCD amera. Depending upon themagni�ation of the mirosope lens, the size of a pixelan vary between 0.75 µm and 6 µm in the image spae.The detetor omponent is plaed on a translation stagealong the beam diretion so that the distane betweendetetor and the imaged sample an be adjusted.Sea urhin spine sample is highly fenestrated single rys-tals of high magnesium alite and ontains about 50vol%open spae. Yet, it has a remarkable strength and �ex-ibility. Beause of its unique, interesting strutural andmehanial properties of high pratial interest, sea urhinspine is used often as a model system in bioni engineer-ing. The sea urhin spine sample used in the work is anA. radiata spine with a diameter of 0.6 mm that was ol-
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leted at Miyako Island, Japan. We used a 2.5× Zeissmirosope lens that allows a detetor pixel to sample theimage spae with a 3µm resolution. The projetion datawere olleted at a total of 400 views evenly distributedover 180◦ with a 0.36◦ angular step. In our experiment,the X-ray energy was 20 KeV, and whereas the detetor-sample distane was 5 mm At suh a short distane, thephase-ontrast e�et due to X-ray propagation is insignif-iant. As suh, the imaging mehanism an be onsid-ered absorption-ontrast dominated, and the projetiondata an thus be modeled adequately as the 2D Radontransforms of the linear attenuation oe�ient distribu-tion within the sample.III Reonstrution algorithmsIn synhrotron X-ray imaging, the FBP algorithm hasbeen used as the primary algorithm for yielding images. Itan reonstrut images with high quality from high qual-ity data olleted at a large number of projetion views.However, when the number of views dereases, the FBPreonstrution often su�ers from strong artifats due tothe lak of su�ient angular samples. In this work, wefous on the investigation of using advaned algorithmsfor image reonstrution from data aquired at a numberof views substantially below that used urrently in syn-hrotron X-ray imaging.In an attempt to address image reonstrution fromsparse projetion data, we have reently developed a on-strained total-variation (TV)-minimization algorithm [1,2℄, whih is referred to as the TV algorithm in the work. Inthe TV algorithm, an image is reonstruted through theminimization of its TV under data and image-positivityonstraints. Existing studies seem to suggest that the TValgorithm has the potential to yield images from highlysparse data, inluding data aquired at the small numberof views. Therefore, in the work, we adjust and apply theTV algorithm to reonstruting images spei�ally fromdata aquired with the SR-µCT system desribed above.Detailed information above the TV algorithm and its im-plementation was provided in Refs. [1, 2℄. However, wewill report at the onferene additional adjustments in-volved in the appliation of the TV algorithm to reon-struting images in synhrotron X-ray CT experiments.Also, in an attempt to evaluate algorithm performane, wehave also implemented some existing algorithms suh asprojetion-onto-onvex-set (POCS) [3℄ and expetation-maximization (EM) algorithms [4, 5℄ and applied themto reonstruting from the same data sets. Their perfor-mane will be ompared with that of the TV algorithm inthe imaging task desribed above.IV ResultsIn the experiment of imaging a sea urhin spine sample,we have olleted a set of data at 400 projetion views

a bFig. 2. Images reonstruted from the full data set by use of (a) theFBP and (b) TV algorithms. Display window: [0.0, 0.5℄.evenly distributed over 180◦, whih we referred to as thefull data set. Clearly, the �true struture� of the sea urhinspine is unknown. Therefore, we reonstrut images of thesample, whih are shown in 2, from the full data set byuse of the FBP and TV algorithms and will use them asthe FBP-referene and TV-referene images (i.e., as the�gold standard� images) in evaluation studies.A Image reonstrution from SR-µCT data olleted ata redued number of viewsFrom the full data set, we extrated a subset of data at80 projetion views uniformly distributed over 180o. Fromthis data subset, we use the FBP, POCS, EM, and TValgorithms to reonstrut images, and the reonstrutionresults are displayed in the upper row of Fig. 3. It anbe observed from the results that the TV algorithm yieldsreonstrution with less artifats than those obtained withthe FBP, EM, and POCS algorithms. For omparison,we also display in Fig. 3 the absolute di�erene imagesbetween the reonstruted images and the FBP-refereneimage (lower row). As the result in the lower row of Fig.3 shows the di�erene between images reonstruted withthe TV algorithm seems to be lower than those obtainedwith the FBP, POCS, and EM algorithms.B Image reonstrution from SR-µCT data olletedover a limited angular rangeDue to ertain physial and hardware onstraints, datamay be olleted only over a limited angular range in SR-
µCT imaging. For example, the sample struture defor-mation often gradually develops during data aquisition,and the deformation in measurements taken at earlierviews is likely to be less notieable than those taken atlater views. Consequently, the portion of data aquiredin the very late part of the measurement proess may notbe usable due to the serious strutural deformation, andthe relatively onsistent data are available only over a lim-ited angular range. In attempt to simulate the ase, weextrated a limited-angular-range subset of data at 160projetion views that uniformly distributed over an an-
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Fig. 1. Shemati (left) and photo (right) of the SR-µCT system at beamline 2BM of the Advaned Photon Soure at Argonne National Laboratory.The speimen data used in the work were olleted with this system.

a b  dFig. 3. Upper row: images reonstruted from 80-view data by use of (a) FBP, (b) EM, () POCS, and (d) TV algorithms. Display window: [0.0,0.5℄. Lower row: absolute di�erenes of between images in the top row and the FBP-referene image. Display window: [0.0, 0.2℄.gular range of 144o. From this subset, we use the FBP,POCS, EM, and TV algorithms to reonstrut images,and the reonstrution results are displayed in the upperrow of Fig. 4. It an be observed from the results thatthe TV algorithm yields reonstrutions with fewer arti-fats than those obtained with the FBP, EM, and POCSalgorithms. Again, for omparison, we display in Fig. 4the absolute di�erene images between the reonstrutedimages and the FBP-referene image (lower row). Thedi�erene between images reonstruted with the TV al-gorithm seems to be lower than those obtained with theFBP, POCS, and EM algorithms.C Evaluation studiesWe have also performed quantitative evaluation studiesof reonstrution quality using a number of image qualitymetris, inluding the mutual information (MI) [6℄ and theuniversal quality index (UQI) [7℄. The index MI is used todesribe similarity of the image intensities of orrespond-

ing pixels within seleted regions of interest (ROIs) be-tween an image and a referene image, whereas the indexUQI is used for desribing the strutural similarity withinseleted ROIs between an image and a referene image [7℄.The loser an image to the referene image, the higher thevalues of MI and UQI. In partiular, UQI= 1.0 the imageis idential to the referene image.For an image under evaluation, we seleted within theimage seven irular ROIs radii that are 30%, 40%, 50%,60%, 70%, 80%, and 90%, respetively, of the radius ofthe �eld of view. Using the orresponding ROIs withina referene image, we alulated MIs and UQIs for theseven ROIs. In Fig. 5 and 6, we displayed MIs and UQIsalulated for the seven ROIs in images reonstruted dis-played in the top rows of Figs. 3 and 4, respetively, whenthe FBP-referene image is used. Similarly, in Fig. 7 and8, we displayed MIs and UQIs alulated for the sevenROIs in images reonstruted displayed in the top rows
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a b  dFig. 4. Upper row: images reonstruted from data aquired over a limited angular range of 144
◦, by use of (a) FBP, (b) EM, () POCS, and (d)TV algorithms, respetively. Display window: [0.0, 0.5℄. Lower row: absolute di�erenes of between images in the top row and the FBP-refereneimage. Display window: [0.0, 0.2℄.of Figs. 3 and 4, respetively, when the TV-referene im-age is used. Results of the quantitative studies in Figs.5-8 demonstrate that the MI and UQI values of the TVreonstrutions are generally higher than those of otheralgorithms, even when the FBP-referene image is used,indiating that the TV algorithm yields images of qualityhigher than do the other algorithms studied.V ConlusionsIn this work, we demonstrate that the SR-µCT datais suitable to the novel TV algorithm. With TV algo-rithm, few-view and limited-few-view projetion data anbe suessfully reonstruted. Our quantitative studiesshow that, ompared to FBP, EM, POCS algorithms, TValgorithms an yield the better reonstrutions in termsof MI and UQI even if di�erent referenes are used. Tak-ing fewer projetion views is ritial to prevent the in-ternal struture deformation in biomedial speimens inSR-µCT. It is expeted that TV-minimization algorithmwill have broad appliations in SR-µCT. The results ofadditional, detailed studies about TV reonstrution per-formane of TV algorithm for sparse SR-µCT data willbe report at the onferene.Referenes[1℄ E. Y. Sidky, K.-M. Kao, and X. Pan, �Aurate imagereonstrution from few-views and limited-angle datain divergent-beam CT,� Journal of X-Ray Siene andTehnology, vol. 14, pp. 119�139, 2006.

[2℄ E. Y. Sidky and X. Pan, �Image reonstrution inirular one-beam omputed tomography by on-strained, total-variation minimization,� Physis inMediine and Biology, vol. 53, pp. 4777�4807, 2008.[3℄ R. Gordon, R. Bender, and G. T. Herman, �Al-gebrai reonstrution tehniques (ART) for three-dimensional eletron mirosopy and x-ray photogra-phy,� J. Theor. Biol., vol. 29, pp. 471�481, 1970.[4℄ A.P. Dempster, N.M. Laird, D.B. Rubin, et al., �Maxi-mum likelihood from inomplete data via the EM algo-rithm,� Journal of the Royal Statistial Soiety. SeriesB (Methodologial), vol. 39, no. 1, pp. 1�38, 1977.[5℄ K. Lange and R. Carson, �EM reonstrution algo-rithms for emission and transmission tomography,� J.Comput. Assisted Tomogr., vol. 8, pp. 306�316, 1984.[6℄ F. Maes, A. Collignon, D. Vandermeulen, G. Marhal,and P. Suetens, �Multi-modality image registrationmaximization of mutual information,� in Proeedingsof MMBIA, 1996, pp. 14�22.[7℄ Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-elli, �Image quality assessment: From error visibilityto strutural similarity,� IEEE. Trans. Image Pro.,vol. 13, pp. 600�612, 2004.
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Fig. 5. MIs (left) and UQIs (right) alulated from images displayed in the upper row of Fig. 3, whih are obtained from 80-view data by use ofFBP (�⋆�), EM (�△�), POCS (�⋄�) and TV (�+�) algorithms, with respet to the FBP-referene image.

Fig. 6. MIs (left) and UQIs (right) alulated from images displayed in the top row of Fig. 4, whih are obtained from 160-view data by use of FBP(�⋆�), EM (�△�), POCS (�⋄�) and TV (�+�) algorithms, with respet to the FBP-referene image.

Fig. 7. MIs (left) and UQIs (right) alulated from images displayed in the top row of Fig. 3, whih are obtained from 80-view data by use of FBP(�⋆�), EM (�△�), POCS (�⋄�) and TV (�+�) algorithms, with respet to the TV-referene image.
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Fig. 8. MIs (left) and UQIs (right) alulated from images displayed in the top row of Fig. 4 with respet to the TV-referene image.
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Abstract—Deforming organs pose an ongoing problem for 

tomographic image reconstruction. Time dependent 
deformations within a scanned body can lead to significant 
artifacts and obscure diagnostic information. In this paper we 
evaluate a motion-compensated filtered backprojection 
algorithm suited for non-rigid motion. The algorithm is applied 
to projections from a 4-D computer phantom with realistic heart 
motion. The motion vector field describing the true 
deformations is provided to the reconstruction algorithm. The 
motion compensation makes it possible to extend the scan angle 
significantly without being affected by motion artifacts. The 
reconstructed images are evaluated in terms of sharpness, 
uniformity, and noise.  
 

Index Terms—Computed tomography, filtered back-
projection, motion compensation, non-rigid deformation. 
 

I. INTRODUCTION 
MAGING deforming objects such as the heart in diagnostic 
cardiac computed tomography (CT) is the subject of active 

research in computed tomography. This four-dimensional (3-
D plus time) imaging problem can be divided into two sub-
problems—motion estimation and motion compensation. The 
4-D images can be reconstructed by solving the two sub-
problems either sequentially or iteratively. For the motion 
compensation, the integration of motion information into the 
image reconstruction process has the potential to improve the 
quality of tomographic images of rapidly deforming objects.  

While it is desirable to develop a mathematically exact,    
4-D reconstruction algorithm for arbitrary non-rigid 
deformations, achieving this goal is unlikely to be possible, 
since the motion estimation is already a challenging, ill-posed 
problem. Therefore, the aim of our project is to develop an 
approximate 4-D reconstruction algorithm that provides 
clinically acceptable image quality. We plan to achieve this 
goal by developing an iterative algorithm that estimates the 
time-dependent motion vector field of the heart from the 
measured projection data and integrates it into the image 
reconstruction process. This paper concerns the motion 
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compensated image reconstruction method.  
A number of motion compensating algorithms for 

dynamically deforming objects have been proposed in the 
literature. However, usually a compromise needs to be made 
and the algorithm is either an approximation of the exact 
solution, or the allowed deformations are limited to a small 
subset of possible transformations, or both. 

Exact algorithms can compensate mathematically exactly 
for affine transformations [1, 2] or deformations that 
maintain acquisition rays as straight lines [3]. In order to 
apply such exact methods for non-rigid deformations, one 
needs to approximate the given arbitrary deformation of a 
small region-of-interest (ROI) by a corresponding 
transformation formula, for example, by affine 
transformations. It is desirable, however, to directly use a 
motion vector field (MVF) which any motion estimation 
method can provide.  

An empirical, approximate method proposed by Schäfer [4] 
does not use transformation models but instead tracks the 
deformation of the object during the filtered backprojection, 
using a given MVF directly. It has been shown that Schäfer's 
method with fan-beam geometry is a very good 
approximation of an exact method for affine transformations 
that are limited to isotropic scaling, rotation, and translation. 
Schäfer’s method was later extended to fan parallel-beam 
geometry for diagnostic, cardiac helical CT by Stevendaal [5, 
6]. Clinical cardiac images reconstructed by the extended 
Schäfer method with a gating window width of 40% of the R-
R interval exhibited fewer motion artifacts than those 
reconstructed with no motion information with a gating 
window width of  22% of the R-R interval. The authors 
argued [6] that the signal-to-noise ratio of images will further 
improve if images are reconstructed with a gating window 
width of 100% of the R-R interval and with accurate MVFs 
over one heart beat. However, it was impossible to obtain 
accurate MVFs of the entire heart for one complete heart beat 
for clinical cases. It remains to be shown that Schäfer’s 
method can maintain good image quality in case of large 
deformations if accurate MVFs are available. 

The aim of this study was to assess the quality of images 
reconstructed by the original Schäfer algorithm with known 
true MVFs. 
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II. MATERIALS AND METHODS 

A. Acquisition of the data sample 
The dynamic 4-D XCAT phantom [7] was used to simulate a 
human torso, including a beating heart. The presence of 
iodine contrast agent was simulated in the ventricles and 
atria. The heart rate was set to 60 bpm and the start time 

0 0t   was set to the end-diastole phase (start of the R-R 
phase). We restricted this study to the reconstruction of one  
2-D slice and changed the XCAT program to allow for heart 
motion only in the x and y direction (perpendicular to the 
body axis). The CT project [7] program was used to generate 
a total of 2880 projections over four rotations with a rotation 
time of 1/3 s. The detector geometry was as follows: fan-beam 
projections onto a cylindrical detector with 768 channels and 
half fan-angle of 26.014 . The distance from the x-ray source 
to the center of the phantom was 570 mm and the distance 
from the center of the phantom to the detector was 470 mm. 
The simulated x-ray spectrum was monochromatic with an 
energy of 80 keV. The choice for a single-energy spectrum 
was made so that the evaluation of the image quality of the  
algorithm under study is not impacted by artifacts from beam-
hardening.  

B. Motion vector field 
The true MVF generated by the XCAT phantom was used as 
input to the reconstruction algorithm. The MVF described the 
displacement for each pixel within the heart boundary from 
the starting time 0t  to an arbitrary time t . A total of 100 
frames with temporal spacing of 10 ms was produced to cover 
the duration of one complete cardiac cycle. The spatial 
distance of the vector grid in the x, y plane was 0.4 mm. 
Linear interpolation in space and time was used to obtain the 
motion vector for arbitrary times and spatial coordinates 
within the heart boundary. In future work, the MVF will be 
replaced by the estimated motion obtained from non-rigid 
image registration. An example for the applied MVF is 
shown in Fig. 1. The MVF in the XCAT phantom is defined 
on the myocardium and interpolated into the blood pool to 
obtain spatially smooth deformation information over the 
entire heart. 

C. Time-dependent deforming object and scan 

The time-dependent deforming object can be described by 
       0 0 00t tt tf x f x v x f x   ,       (1) 

 0 0( )t tx x v x , 

where 0( )tv x  is the displacement vector from 0x  to tx . 

The circular source trajectory and fan-beam projections can 
be expressed as: 

    sin , cos T
ts R R     ,          (2) 

     0, t t tt tg f s l dl      ,        (3) 

where αt = (-sinα, cosα)T is a unit vector along a ray and R is 
the distance from the source to the rotation axis. The source 
parameter is a monotonically increasing function of time, for 
example, λ = at. 
 

 
 
 

D. Motion-compensated reconstruction 
1) Algorithm 

We used Schäfer’s algorithm with a redundancy weighting as 
re-defined in [8].  
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where ( , )tw    is the redundancy weight (see next 
paragraph), cos t   is the cosine weight, ( , )t tg    are the 
projection data, and ( )R t th    denotes the ramp filtering. 
 

2) Redundancy weight function 
The performance of the reconstruction algorithm with non-
rigid motion compensation was evaluated using two different 
weighting schemes: 1. Parker weight, which is currently the 
standard in most clinical protocols for cardiac imaging and 
uses projection data from a half-scan plus fan-angle; 2. 
overscan weight, which utilizes projections from a larger 
angular range. The weighting function is characterized by a 
symmetric trapezoidal shape and defined by 0 , the starting 
view angle, c , the center of the range used for 
reconstruction, m , half of the width of the reconstruction 
window at half maximum, and f , the "feathering" range at 

the edges of the trapezoid. For an illustration see Fig. 2.  
 

 
Fig. 2: Definition of the redundancy weight function. 
 

Fig. 1: Visualization of the 
XCAT phantom and the motion 
vector field. The image was 
generated at the end of diastole 
(t=0 ms). The vectors indicate 
the motion to a frame 0.5 
seconds later. The duration of 
the heart cycle was 1 s. 
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III. EVALUATION OF THE IMAGE QUALITY 
The image quality was evaluated in terms of sharpness of 
edges, uniformity, and noise using the following procedures. 

A. Sharpness of edges 
The generated phantom has uniform intensity values within a 
given tissue type and sharp boundaries between different 
tissues and organs. Therefore, a profile of intensity values 
perpendicular to the border between two different tissue types 
should follow a step function. Blurring of edges during the 
reconstruction due to motion results in a less steep step 
function (segment B in Fig. 3). 
  

 
Fig. 3: Idealized intensity profile across two different tissue types. The generated 
image has very sharp edges. Edges in the reconstructed image are blurred. 
 
The width of segment B of the step function is a measure of 
the sharpness of edges. To estimate the width, the three 
segments where fitted separately: Segment A and C with 
constant functions and segment B with a linear function. The 
intersections of the three fitted segments yield the width of 
segment B (for an example see Fig. 6). 

B. Uniformity 
The uniformity of the reconstructed images was measured as 
the mean value of pixel values within seven ROIs within the 
same tissue type (myocardium around the left ventricle). Then 
the normalized intensity difference I  between the 
maximum and minimum intensity of the seven ROIs was 
calculated as ( ) /I I II max min   , where I  denotes the 
average of the seven intensities. I  is a measure of the 
image uniformity. 

C. Noise 
In order to compare the noise, Poisson noise was added to the 
projection data corresponding to 100,000 photons per 
projection ray. Then the mean   and standard deviation   
of intensity values were calculated in several ROIs, and for 
each ROI the relative standard deviation /   was taken as a 
measure of the noise. 

IV. RESULTS  

A. Reconstructed images 
Images were reconstructed in four ways: with and without 
motion compensation and with Parker weight and with 
overscan weight. The parameters for the overscan weight are 

0 90   , 630c   , 360m   , and 30f   . The 

effective cardiac gating window width is therefore 17% for 

the Parker weight and 67% for the overscan weight. Fig. 4 
shows the results for the images reconstructed with Parker 
weight. The motion compensation correctly reconstructs the 
phase at 0t t  (compare to Fig. 1) whereas the non-
compensated image exhibits strong motion artifacts. With the 
overscan weight (Fig. 5) the non-compensated image shows 
even larger blurring of the edges (in particular in the left 
ventricle). Again, the motion-compensation is able to restore 
the phase at time 0t  better. 
 

  
 

  
Fig. 4: Parker weight. Top: reconstructed images without (left) and with (right) 
motion compensation. Bottom: difference images between the generated phantom 
and the reconstructed images. Without (left) and with (right) motion 
compensation. The window-level for the display of the top row is W=0.1, L=0.2 
(in Hounsfield units: W=590HU, L=180HU). The window-level for the 
subtracted images is W=0.05, W=0.15. 
 

  
Fig. 5: Overscan weight. Reconstructed image without (left) and with (right) 
motion compensation. 
 

B. Sharpness of edges 
The sharpness of edges was evaluated from the profiles of two 
rectangular ROIs. The profile was calculated along the longer 
side of each rectangle. Table I shows that edge blurring with 
the overscan weight is 1.5 to 1.9 times smaller than with the 
Parker weight. 
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Table I: Step width of profiles for two regions of interest. 

Width non compensated motion comp. ratio 
ROI 1 5.4 3.7 1.5 
ROI 2 7.8 4.2 1.9 

 

 
C. Uniformity 

The calculated values of I  obtained from seven ROIs are 
detailed in Table II. With the Parker weight, the uniformity of 
the compensated and non-compensated reconstruction agrees 
within 8%. Using the overscan weight, the motion 
compensated algorithm produces an image with a uniformity 
that is 39% better than without motion compensation. The 
uniformity using the overscan weight is on average 4.5 times 
better than the uniformity using the Parker weight. 
 
Table II: Results of the uniformity measurement. 

I  non compensated motion comp. ratio 

Parker 6.6% 7.2% 0.92 
overscan 1.8% 1.3% 1.39 

 

D. Noise 
The relative noise was measured in four regions-of-interest: 
ROI1in the left ventricle, ROI2 in the right ventricle, ROI3 in 
the myocardium between the left and right ventricle, and 
ROI4 in the myocardium of the outer side of the left ventricle. 
The results in Table III show that the relative noise decreases 
when the overscan weight is used. No significant differences 
are observed between compensated and non-compensated 
reconstruction.  On average the noise using the overscan 
weight is about 30% smaller compared to the Parker weight. 
 
Table III: Results of the noise measurement. 

/   ROI1 ROI2 ROI3 ROI4 
Parker, no mc 0.051 0.058 0.065 0.055 
Parker, mc 0.053 0.057 0.063 0.051 
Overscan, no mc 0.033 0.041 0.049 0.040 
Overscan, mc 0.036 0.042 0.040 0.039 

 

V. CONCLUSION 
We evaluated a motion-compensated, filtered backprojection 
algorithm based on Schäfer's method using the dynamic 
XCAT phantom of a human torso with a beating heart. 
Applying the true motion vector field from the phantom, the 
algorithm reconstructed the image correctly at the target heart 
phase. 
Edges were preserved better with the motion-compensated 
algorithm while the image uniformity is preserved (Parker 

weight) or even enhanced (overscan weight). There was no 
significant difference in the image noise. 
Limitations: The algorithm was tested in 2-D+t with the true 
motion information and a monochromatic x-ray source. In the 
future, we intend to repeat the study on a 3-D+t volume. We 
will also replace the ground-truth MVF with deformation 
information obtained by image registration, and use a realistic 
x-ray spectrum. 
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Fig. 6: An example for the fit to 
a profile to determine the 
sharpness of edges. 
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Abstract—Pixelated photon-counting detectors have been 

investigated for improved tissue discrimination in medical-
imaging applications.  In this work, we investigate the challenges 
and potentials of using spectroscopic detectors for discrimination 
of benign and threat (explosive) material in security-screening 
applications.  We assume a Bremsstrahlung source and an 
idealized detector with uniform energy windows and unbounded 
maximum count rate.  The simulated object consists of materials 
commonly found in security-screening applications, which differ 
significantly in Zeff and density from medical-imaging 
applications.  A decomposition of sinogram data using mass 
attenuation coefficients as basis functions is performed.  It is 
shown that judicious choice of two to three basis functions 
provide useful material discrimination, but using more basis 
functions will be challenging because of the non-linearity of the 
decomposition process. 
 

Index Terms—computed tomography, spectroscopic detector, 
photon counting, security screening, explosive detection 
 

I. INTRODUCTION 
he Transportation Security Administration (TSA) inspects 
over 500 million pieces of luggage each year [1].  

Baggage inspection is automated and conducted by explosive 
detection systems (EDS), primarily computed-tomography 
(CT) systems tasked with distinguishing explosives from 
benign material.  Security screening differs from medical 
imaging in both the composition of the scanned object and the 
threat-detection task, e.g., contraband materials versus tumors.  
In one respect the imaging problem is similar in both cases: 
material discrimination – determining whether the gray level 
in an image represents an explosive or benign material (a 
tumor or healthy tissue) – is hampered by the broad energy 
spectrum of a Bremsstrahlung x-ray beam that is used in 
contemporary CT systems.  

Dual-energy computed tomography has been used in both 
medical and security applications to enhance this 
discrimination task [2, 3].  In this approach, a source (or 
sources) with two endpoint energies, or a detector sensitive to 
different energy ranges collect two sets of sinograms.  These 
data are used to decouple physical parameters of the 
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attenuation coefficient, for instance, density and effective 
atomic number (Zeff), in the final images. The high flux from a 
Bremsstrahlung source, coupled with the requirement that 
imaging be performed rapidly, requires the use of current-
integration detectors with which any spectral information is 
lost.  (“Current-integration detectors” are defined here to be 
radiation detectors in which the output signal is proportional to 
the total energy deposited within a (short) integration 
window.)  Recent work in the medical-imaging community 
has asked whether multiple energy windows would assist in 
diagnostic utility [4-6].  Detectors that would enable this mode 
of detection are commonly called photon-counting detectors.  
Detection rates in room-temperature semiconductors (CdTe) 
of up to 5x106/sec/mm2 have been reported.  This rate may be 
too low for conventional CT, but it is assumed that the 
capabilities of these detectors will continue to increase.  A 
small-animal imaging system based on CdTe detectors has 
already been demonstrated [7]. 

The purpose of this paper is to examine the potential offered 
by spectral information in security CT screening.  A simulated 
fan-beam CT geometry using a Bremsstrahlung source is 
coupled to an idealized detector with an unbounded maximum 
count rate and uniform energy.  The question is how to use the 
information from such a detector to better discriminate threat 
from benign material in a security CT scan. 

 

II. METHOD 

A. Data Model 
Projection data is modeled as follows.  Let 

€ 

S E( )  represent 
the normalized incident (Bremsstrahlung) spectrum and 

€ 

Nemitted  
represent the incident number of photons.  Then the number of 
photons that pass through the object unattenuated can be 
written as  

  

€ 

N out E( ) = N emitted S E( )e
− µ

 
x ,E( )dl

L

∫
 (1) 

where 

€ 

L  is the pathlength through the object along the line 
from the source position to a detector pixel and 

  

€ 

µ
 x ,E( )  is the 

position and energy dependent linear attenuation coefficient of 
the material in the object.  The detector response to the input 
flux can be modeled as an efficiency function, 

€ 

D E( ) , and an 
energy-weighting function, 

€ 

Ri E( ) , where the subscript 

€ 

i  is 
the index to each energy bin.  The energy-weighting function 
is the integral of the energy response of the detector over an 
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energy window set by upper and lower limits and will be 
approximated by a Gaussian in this work. The number of 
detected photons in each energy bin can then be written as 

€ 

Ni = Ri E( )D E( )Nout E( )dE
0

Emax

∫ . (2) 

The log-corrected data can be written as 

  

€ 

gi = − ln wi E( )
N out E( )

N emittedS E( )
dE

0

Emax

∫
 

 
  

 

 
  

= − ln wi E( )e
− µ

 
x ,E( )dl

L

∫
dE

0

Emax

∫
 

 
 

 

 
 

, (3) 

where  

€ 

wi E( ) =
Ri E( )D E( )S E( )

Ri E( )D E( )S E( )dE
0

Emax

∫
  (4) 

can be considered to represent the relative weights of each 
energy bin and is noise free. 

B. Multiple-Energy CT Imaging Methodology 
Dual- and multiple-energy CT inversion methods 

decompose the linear attenuation coefficient for a material into 
independent functions of space and energy: 

  

€ 

µ
 x ,E( ) = a j

j
∑  x ( ) f j E( ) .   

This can be considered to be an expansion of the linear 
attenuation coefficient into a set of energy-dependent basis 
functions with spatially dependent coefficients.  Substituting 
this expression into the log-corrected data equation, it can be 

seen that 

€ 

gi = − ln wi E( )e
− Aj fj E( )

j

∑
dE

0

Emax

∫
 

 
  

 

 
  , (5) 

where 
  

€ 

A j = a j

 x ( )dl
L
∫  are energy-independent sinograms.  

Given a set of   

€ 

i = 1…N  measurements and   

€ 

j = 1…M  basis 
functions, the game is to invert the set of nonlinear equations 
defined by (4) to solve for the coefficients (energy-
independent sinograms); this step is referred to as the 
decomposition into basis functions.  A CT reconstruction is 
then performed on line integrals.  This results in 

€ 

M  
reconstructed images, whose interpretation depends on the 
choice of basis functions.  

For imaging biological tissue for which there are no 
materials with atomic number greater than 20, there is an 
argument that the basis functions should be based on the 
dominant attenuation mechanisms: photoelectric absorption 
(PE) and Compton scatter. Both coefficients can then be 
described as functions of electron density, and the coefficient 
for the photoelectric effect is a function of Zeff as well. This is 
often referred to as the physics-based decomposition 
approach.  An alternative is to use the mass attenuation 
coefficients (MACs) of two dissimilar materials; in this case, 
the coefficients will be functions of the relative density.  It can 
be shown [7] that a set of two MAC-based basis functions can 
be derived from the physics-based (PE and Compton) 
approach.  

For an imaging system that has more than two available 

energy bins, it is possible to consider using more than two 
basis functions.  At first glance, it would seem that more basis 
functions would be useful for better discrimination, however 
attenuation coefficients are slowly varying as a function of 
element (Z), and so it may be difficult to find many orthogonal 
(or nearly orthogonal) basis functions for the energy range 
used in security screening of baggage.  Indeed, some have 
argued that the principle attenuation mechanisms (PE and 
Compton scatter) limit the number of orthogonal basis 
functions to two. Schlomka, et al. [8], have used a mix of 
physics-based and MAC-based basis functions that exploits 
the K-edges of iodine and gadolinium to develop a four-
function decomposition scheme for a small animal imager.  
Choice of the basis functions for the security screening will be 
a challenge.  

The reconstructions from the basis-function coefficients are 
not weighted averages of the linear attenuation coefficients, 
but are proportional to the material density (if MAC basis 
functions are used) or material density and Zeff for the physics-
based cases.  In an additional image-processing step, the 
energy dependent attenuation coefficients can be 
“reconstructed” as a function of position in the reconstructed 
image using the reconstructed basis-function coefficients (in 
the basis-function decomposition equation). 

C. Materials and Basis Functions 
For the security-screening experiment, a set of materials 

was simulated that spans the range of material types that could 
be found in baggage.  These objects were developed in an 
earlier project focused on air-cargo screening [9]. It is 
important to note that these materials span a larger range of 
density and Zeff than in medical imaging.  The materials used 
are summarized in Table 1 and the mass attenuation 
coefficients of these compounds using elemental cross 
sections from the XCOM database are plotted in Fig. 1. 

 
Material Density [g/cm3] Zeff 
Explosives (EXP) 1.76 7.44 
Wearing Apparel (WA) 0.16 22.06 
Water (H2O) 1.0 7.42 
Machine Parts (MP) 0.08 25.89 
Electronics (EE) 0.24 34.64 
Alcohol (CH) 0.79 6.61 
Printed Material (PM) 0.8 7.38 
Table 1 Material descriptions for the simulation studies. 
 
 As seen in Fig. 1, the low-Z materials have similar, almost 
scaled, attenuation plots.  Although it is difficult to see, the 
alcohol (chemicals) curve crosses over the other three low-Z 
curves in the range 34-100keV.  The higher-Z materials have a 
stronger photoelectric contribution in this energy range and 
have a few characteristic K-edges: a Br line at 13keV in 
wearing apparel (bromine is found in polyester) and a Pb line 
at 84keV in electronics.  The density that is assumed for the 
high-Z materials is a volume-averaged density; in the initial 
simulations, rather than detailed simulation of actual objects, 
larger, lower-density objects are being used.  The resulting 
reconstructions should scale with density and the effects on 
discrimination will be discussed below.  A simple object 
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containing all 7 materials was used to test the material 
decomposition. 
 

Figure 1 Mass attenuation coefficients of materials in Table 1. [Color versions 
of the plots are available in the online version.] 

D. Experimental Setup 
A single-slice fan-beam system using a flat detector, a 1m 

source-to-detector distance and a nominal magnification of 
two was simulated.  The detector was simulated to have 400 
pixels on a 0.15mm pitch, and an energy efficiency 

€ 

D E( ) = 1. 
Five hundred equally spaced projections on a circle were 
simulated.  Energy-weighting functions were modeled as a set 
of Gaussian with mean energies at 21, 51, 81, 111, and 
141keV with a standard deviation of 10keV.  The energy 
spectrum, energy windows, and a normalized mass attenuation 
curve (for explosive) are shown in figure 2. 
 

 
Figure 2 The energy spectrum and energy windows used in the source and 
detector model in the simulations.  The mass attenuation coefficient of the 
explosive material is also shown. 
 

A ray-tracing simulation was used to calculate the line 
integrals through the object in 1keV energy steps [

€ 

S E( )  and 

€ 

µ E( )  were discretized into 1keV bins].  Poisson noise was 
added to the spectra that passed through the object, 

€ 

Nout E( ) , 

before summation into the energy windows, 

€ 

gi .  The number 
of emitted photons, 

€ 

Nemitted E( ) , were scaled to represent a total 
photon flux at the detector face (assumed to be 40k photons in 
all of the simulations below), and noise was added to each 
1keV wide bin independently using 

€ 

Nout Ek( )  as the mean.  
The decomposition of the windowed data, 

€ 

gi , into line 
integrals of the basis-function coefficients, 

€ 

A j , was performed 
as a least-squares optimization using 

€ 

wi E( )  and 

€ 

f j E( )  as 
prior information.  Mass attenuation coefficients were used as 
the basis functions.  Images of the basis-function coefficients 
were reconstructed using a filtered backprojection algorithm. 

The simulated object was a uniform disk (24cm diameter) 
of the wearing-apparel material, meant to simulate the clothing 
“background” in an image.  Inserted in this uniform disk were 
six uniform cylinders (2cm diameter) consisting of the other 
six materials in Table 1.  The basis functions used are the mass 
attenuation coefficients of some subset of these seven 
materials.  The imaging task was to be able to distinguish the 
explosive material (threat) from the other (benign) materials. 

The hypothesis is that the inversion process from 

€ 

gi  into 

€ 

A j  separates the object contents into bins according to 
materials.  For instance, if the object consisted of two 
materials (e.g., wearing apparel and explosive) and MACs for 
those materials were used as the basis functions, the 
reconstructed values of the coefficients for the explosive 
would be equal to the density of explosive in the region of the 
explosive and zero everywhere else and the reconstruction of 
the wearing-apparel coefficients would be the opposite. In this 
context, a third different material in the object would end up 
correlated with the basis function with the most similar MAC, 
or “shared” between basis functions.  Then discrimination 
between materials would have to be based on relative intensity 
of the reconstructed pixels (equal to density); for example the 
image corresponding to the explosive basis function would be 
non-zero for regions of the object that did not contain 
explosive material, but the density would be incorrect.  As 
more materials are added to the object, there will be more 
sharing between basis functions and more potential that the 
reconstructed densities will confuse the discrimination 
process. 

III. EXPERIMENTAL RESULTS 
Reconstructed images using two basis functions (explosive 

and wearing apparel) are shown in Fig. 3.  The average and 
standard deviation of the pixel intensities in regions of interest 
within each material are summarized in Table 2.   
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Figure 3 Reconstructed images of the phantom using two the mass attenuation 
coefficients of explosive (EXP) and wearing apparel (WA) as the basis 
functions.  The drawing on the left indicates the material distribution.  The 
image in the middle is the reconstruction using explosive as the basis function.  
The image on the right is the reconstruction of the wearing apparel basis 
function.  The images have been scaled to maximum and minimum values 
independently. 
 

Density 
Reconstructed 

Material 
Simulated 
[g/cm3] 

EXP Basis 
Function 

WA Basis 
Function 

Explosives (EXP) 1.76 1.75 ± 0.09 0.01 ± 0.03 
Wearing Apparel (WA) 0.16 -0.01 ± 0.08 0.16 ± 0.03 
Water (H2O) 1.0 1.05 ± 0.07 0.01 ± 0.03 
Machine Parts (MP) 0.08 -0.07 ± 0.05 0.13 ± 0.02 
Electronics (EE) 0.24 0.23 ± 0.07 0.24 ± 0.03 
Alcohol (CH) 0.79 0.85 ± 0.07 0.00 ± 0.02 
Printed Material (PM) 0.8 0.82 ± 0.06 0.00 ± 0.02 
Table 2 Simulated and reconstructed densities of the materials in the phantom 
using the two-basis-function material separation.  The reconstructed values are 
calculated from a rectangular region of interest centered in each material.  The 
standard deviation reflects noise in the projection data as well as discretization 
errors. 
 
There are a few results worth noting: 
- The explosive material and the wearing apparel are 

reconstructed in the proper basis-function “bins” and with 
the correct density.   

- Other low-Z materials (water, alcohol, printed material) end 
up in the explosives bin with approximately the correct 
densities.  This is expected because the mass attenuation 
coefficients are so similar.  Discrimination is still possible 
because the densities are sufficiently different from 
explosive. 

- The high-Z materials (machine parts and electronics) are 
shared between the two bins.  Machine parts has a negative 
contribution from the explosives basis function, while 
electronics is reconstructed with about the correct density in 
each bin. 
Also note that if the imaging task is to detect explosives, 

then the only image of interest is the reconstruction of the 
coefficients of the explosives basis function. Additional basis 
functions could be used to move some of the other materials 
(e.g., electronics) out of the explosives image.   

Using additional basis functions in the decomposition 
process should improve the separation between materials.  
Reconstructions using three basis functions are shown below.  
In the first example, the MAC for electronics was added to 
explosive and wearing apparel materials as the third basis 
function.  Results of the decomposition and subsequent 
reconstruction are shown in Fig. 4 and Table 3.  

There are two noteworthy changes for this case.  The 
electronics is now partitioned into the electronics basis-

function bin correctly.  However, this occurs at the expense of 
more uncertainty in the estimated density in each of the other 
basis-function images.  The electronics component has been 
removed from the explosives image, perhaps simplifying the 
explosives-detection task. 

In another example, the MAC for alcohol was used as the 
additional basis function.  These results are shown in Fig. 5 
and Table 4. The material separation is dramatically worse for 
the case where alcohol replaces electronics as the third basis 
function.  All of the low-Z materials share weight between the 
MACs for explosive and alcohol, and the mean density values 
are not even close to correct. 
 

 
Figure 4 Reconstructions using explosives (left), wearing apparel (middle) and 
electronics as the basis functions.  Images have been scaled independently. 
 

Density 
Reconstructed 

Material 
Simulated 
[g/cm3] EXP Basis Ftn WA Basis Ftn EE Basis Ftn 

EXP 1.76 1.71 ± 0.17 0.00 ± 0.09 0.01 ±0.010 
WA 0.16 -0.01 ± 0.16 0.16 ± 0.07 0.01 ± 0.09 
H2O 1.0 1.05 ± 0.14 0.01 ± 0.07 0.00 ± 0.08 
MP 0.08 -0.08 ± 0.10 0.12 ± 0.06 0.01 ± 0.07 
EE 0.24 -0.01 ± 0.15 0.00 ± 0.07 0.24 ± 0.09 
CH 0.79 0.85 ± 0.12 -0.01 ± 0.07 0.00 ± 0.07 
PM 0.8 0.82 ± 0.12 0.00 ± 0.07 0.00 ± 0.08 
Table 3 Reconstructed densities for the 3-basis-function case using explosive, 
wearing apparel, and electronics as the basis functions. 
 

 
Figure 5 Reconstructions using explosives (left), wearing apparel (middle) and 
alcohol as the basis functions.  Images have been scaled independently. 
 

Density 
Reconstructed 

Material 
Simulated 
[g/cm3] EXP Basis Ftn WA Basis Ftn CH Basis Ftn 

EXP 1.76 10.23 ± 30.04 -0.07 ± 0.27 -7.79 ± 27.54 
WA 0.16 -2.97 ± 19.72 0.19 ± 0.18 2.72 ± 18.08 
H2O 1.0 5.34 ± 24.59 -0.03 ± 0.22 -3.93 ± 22.55 
MP 0.08 -2.86 ± 12.94 0.16 ± 0.12 2.56 ± 11.86 
EE 0.24 4.54 ± 22.78 0.20 ± 0.21 -3.95 ± 20.89 
CH 0.79 2.96 ± 20.15 -0.02 ± 0.18 -1.94 ± 18.48 
PM 0.8 1.93 ± 21.21 -0.01 ± 0.19 -1.02 ± 19.45 
Table 4 Simulated and reconstructed densities for the explosives, wearing 
apparel and alcohol basis functions 

 
The mean coefficient values (Table 5) can be used to 

“reconstruct” the linear attenuation coefficients of the seven 
materials as shown in Fig. 6.  These fits are fairly good 
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qualitatively, an indication that the basis-function 
decomposition represents the linear attenuation coefficient 
(even in the presence of noise), but there was some confusion 
about which of the two similar basis functions should 
contribute to a material.  Plots of the reconstructed linear 
attenuation coefficients for the other two cases (EXP/WA and 
EXP/WA/EE basis functions) show qualitatively as good or 
better fits to the attenuation coefficients. 

The challenge of using a third (and a fourth or fifth) basis 
function in the decomposition process is to find features of the 
attenuation coefficient that may be unique in a multi-
dimensional space.  The MAC for alcohol was chosen in the 
third example because it crosses the MAC of the other low-Z 
materials, but that feature was apparently not unique enough.  
On the other hand, the distinguishing feature of the EE MAC 
is the lead absorption edge; this feature cannot be fit by a 
linear combination of the other basis functions and allows the 
EE material to be separated from the other materials.   
 

 
Figure 6 Reconstructed basis functions using coefficients from the mean 
values of the ROIs in Table 4 for the experiment using the MACs of 
explosive, wearing apparel, and alcohol.  The solid lines are the simulated 
linear attenuation coefficients and the dashed lines are the fits from the 
reconstructed data.  The fits are fairly good, although worse at lower energies.  
Note the inability to adequately fit the lead k-edge absorption line in the 
electronics material type. 

IV. DISCUSSION 
The challenge of using multiple energy windows for 

material decomposition of x-ray CT data is the non-linearity in 
the decomposition process.  It is likely that there are multiple 
local minima in the inversion process, and this results in fits 
that, while they correctly fit the attenuation coefficient, do not 
provide material discrimination in the image.  For the linear 
case, for example, if the total attenuation is very small, we 
have observed that the decomposition performs much better.   

We have shown that a 2-basis-function decomposition can 
be used to discriminate threats (explosives) from benign 
material, although higher Zeff material may corrupt the imaging 
task when that material falls into the threat bin.  We showed 
that discriminability may improve with three basis functions 
provided that the additional function has unique features (and 

that the increased uncertainty in pixel values did not add to the 
confusion).  Using three or more basis functions to improve 
discriminability will depend upon finding unique features and 
defining a robust decomposition process. 
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Combining the Virtual Fanbeam and Differentiated
Backprojection Methods of Region-of-Interest

Reconstruction
C. Mennessier, R. Clackdoyle, and M. Defrise

I. INTRODUCTION

INTEREST in 2D Region-of-Interest (ROI) tomographic
reconstruction has increased since 2002, when it appeared

possible to handle some incomplete data problems. By “tomo-
graphic reconstruction” we mean here only exact reconstruc-
tion methods. There exist two main approaches : the Virtual
FanBeam (VFB) [1], [2] and the Differentiated BackProjection
(DBP) methods [3]. The methods are exact because they
produce the (same) correct answer when presented with ideal
noise-free data. However, the approaches are not equivalent
in the sense that, from a noisy sinogram, they do not lead
to the same reconstruction. In addition, some incomplete data
problems can be solved by one method but not the other.

The fact that there are two non-equivalent methods for ROI
reconstruction means that data are redundant. The question
is, can we exploit the redudancy to improve the quality of
the reconstructed image? The goal of the present work is
to combine the DBP and the VFB methods to improve the
variance of the combined image. We consider the particular
incomplete data problem that occurs in the bi-lateral truncation
case (see section II), which can be handled by both methods.

II. THEORY

Let f(x) be an image function and p(φ, s) the corresponding
sinogram i.e. the Radon transform of f(x) for the parallel
geometry. As both VFB and DBP methods correspond to linear
operators, the value of the reconstructed functions fV FB(x)
and fDBP (x) at each point x can be obtained as the inner
products of p(φ, s) with specific weight functions wV FBx (φ, s)
and wDBPx (φ, s), for the VFB and the DBP methods respec-
tively [4]. More precisely we have :

fV FB(x)=

∫
dφ

∫
ds p(φ, s)wV FBx (φ, s) =< p,wV FBx >

fDBP (x)=

∫
dφ

∫
ds p(φ, s)wDBPx (φ, s) =< p,wDBPx >(1)

For each x in the ROI where both VFB and DBP can be
applied, we look for the scalar λx which is such that the
combined function

fλ(x) = λxf
V FB(x) + (1− λx)fDBP (x) (2)
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optimizes the variance of fλ(x).
Let us denote υV FBx , υDBPx and υλx respectively the

variances of fV FB(x), fDBP (x) and fλ(x). We put υp for
the variance of the sinogram and we assume that the noise
covariance matrix is diagonal. Using (1) one has :

υV FBx =< υp,
(
wV FBx

)2
>, υDBPx =< υp,

(
wDBPx

)2
>(3)

υλx =< υp,
(
wλx
)2
> (4)

From equations (1) and (2) the weight function for the
combined reconstruction is wλx = λxw

V FB
x +(1−λx)wDBPx .

Thus, developing
(
wλx
)2

in (4) we obtain:(
wλx
)2

= λ2x(w
V FB
x − wDBPx )2

+ 2λx

(
wV FBx wDBPx −

(
wDBPx

)2)
+
(
wDBPx

)2
(5)

For each point x, we determine the value λ∗x that minimizes
the variance vλx . Equations (4) and (5), give a quadratic
expression in λx which is minimized at

λ∗x =
< υp,

(
wDBPx

)2 − wV FBx wDBPx >

< υp, (wV FBx − wDBPx )2 >
(6)

The optimal variance for fλ is deduced by putting equa-
tion (6) in equation (4) :

υλ
∗

x = υDBPx −

(
< υp, wV FBx wDBPx −

(
wDBPx

)2
>
)2

< υp, (wV FBx − wDBPx )2 >
(7)

Similarly

υλ
∗

x = υV FBx −

(
< υp, wV FBx wDBPx −

(
wV FBx

)2
>
)2

< υp, (wV FBx − wDBPx )2 >
(8)

From equations (7) and (8), we check that the variance
of fλ

∗
is smaller than or equal to the variances of fV FB

and fDBP , with λ∗x given by equation (6). Since both the
VFB and DBP algorithms give exact reconstruction within
the ROI, so does their linear combination. Note that even
though the combination in equation (2) is linear, the optimal
coefficient (6) does not depend linearly on the data when the
noise variance is object dependent, and in this situation the
proposed method is not a linear reconstruction algorithm.

The remaining question is to evaluate the magnitude of the
gain in variance, and this has been done in preliminary numeri-
cal simulations. Evaluating the variances requires computation
of the weight functions.
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Fig. 1. The bilateral truncation (red circle: the field of view) and the
ROI (green rectangle).

III. NUMERICAL SIMULATIONS

We use a modified Shepp-Logan phantom for f(x), with
main ellipse of size 20cm × 10cm (see figure 1). Its Radon
transform is analytically calculated for each ray crossing a
field-of-view defined by a disk, centered at the ellipse center,
with radius equal to 7.5cm. Rays not crossing that disk are not
measured; this problem is known as the bi-lateral truncation
problem. Even though almost the entire field-of-view can
be reconstructed with both VFB and DBP from these bi-
lateral truncated data, we focus on a small rectangular ROI,
around the 3 small ellipses. The corners of this rectange are
at (−0.01,−1.79), (−0.01,−3.2), (2.58,−1.79), (2.58,−3.2)
(see figure 1). The reconstructed ROI was discretized into 33
x 19 pixels of size 0.08cm× 0.08cm.

In a first step we compute the weight functions wV FBx and
wDBPx . For the VFB method we use a segment of the upper
half-circle for the virtual trajectory to process the truncated
parallel projections. The DBP method is based on the fact
that the 1D finite Hilbert transform can be computed, and
then inverted, along well chosen lines. In our case we choose
vertical lines. The weight functions are actually distributions,
and the analytical expressions in the previous section must
be discretized and regularized in such a way that the spatial
resolutions of the two methods are as close as possible.
This is difficult because the two methods are very different
and because the singularities of wV FBx and wDBPx require
sophisticated numerical tools.

In this exploratory work, we discretize the data on a
sinogram of size nφ = 245 and ns = 200. For each
sinogram bin (φ0, s0) we compute the weights wV FBx (φ0, s0)
and wDBPx (φ0, s0) as follows : we reconstruct, using the VFB
and the DBP algorithms, a sinogram that is equal to zero for
all bins except for bin (φ0, s0) which is set equal to one.
In the continuous description of section II, this is equivalent
to inserting p(φ, s) = δ(φ − φ0, s − s0) into equation (1)
and then setting wV FBx (φ0, s0) = fV FB(φ0,s0)

(x) (and similarly
for the DBP method). This procedure must be repeated for
each of the sinogram bins (φ0, s0) so it requires 245 × 200
reconstructions for each method. The VFB method is much
more time-consuming than the DBP method. The choice of
sinogram size nφ × ns was based on a study to balance

Fig. 2. The estimated λ∗x coefficients, in the ROI.

reconstructed image quality against total time to generate the
weight functions. For the simulation described above, 3 days
were needed for the VFB weight function reconstruction using
matlab codes on a 2.39 GHz and 1.98 Gb RAM, laptop.

In a second step, we used the weight functions to evaluate
the optimized λ∗x coefficients using equation (6). The sinogram
variance was taken to be vp(φ, s) = ((0.001/M)p(φ, s))2

where M = max{p(φ, s)}. The λ∗x values are displayed in
figure 2. The minimum and maximum values of λ∗x for the
33 × 19 values of the ROI were 0.8140 and 1.7459. In each
row shown in figure 2, the values varied by less than 0.339.
The sawtooth-like oscillations of the lambda values in the ROI
are not currently understood.

In a third step, the variances of fV FB(x), fDBP (x) and
fλ

∗
x(x) in the ROI were evaluated by performing N = 50000

reconstructions from noisy sinograms pn(φ, s) defined by :

pn(φ, s) = p(φ, s)(1 + k X), n = 1, ..., N (9)

where X is the standard centered gaussian distribution and
k = 0.001/M for M = max{p(φ, s)}. The fλ function
is calculated as given in equation (2). The reconstructions
are shown in figures 3,4,5. The horizontal profiles indicate
significant distortions that our simulations (not shown) sug-
gest are due to the coarse sinogram-sampling used for time-
computation reasons. The variances are shown in figure 6. For
this particular simulation, the VFB variance is nearly 30%
smaller than the DBP variance. The fλ variance is very close
to that of VFB, 2% smaller on average, and the improvement
varies between 0% and 9% in the ROI, as shown in figure 6.
Using the variances obtained from the N reconstructions, the
two inequalities υλ < υV FB and υλ < υDBP hold for 98%
of the 33 × 19 pixels in the ROI. The 2% of pixels for
which the variance is not improved is presumed to be due
to statistical uncertainty and would be removed by increasing
N . The inequalities are verified everywhere in the ROI if
the theoretical variances are used i.e. the variances obtained
from equations (3) and (7). The results show that theoretically
as well as experimentally, the combined method variance is
smaller than the fV FB and fDBP variances. The values of
both theoretical and experimental variances inside a 4 × 5
rectangle centered on the middle ellipse (see red rectangle in
figure 5) are given in the tables I, II, III.
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TABLE I
THEORETICAL AND EXPERIMENTAL VARIANCES : 106υV FB

6.273 5.783 6.243 5.656 6.275 5.727 6.284 5.637
6.248 5.780 6.171 5.822 6.223 5.755 6.188 5.857
6.228 5.884 6.138 5.954 6.158 5.898 6.173 6.007
6.192 6.077 6.057 6.345 6.183 6.028 6.005 6.377
6.108 6.400 6.014 6.409 6.161 6.457 6.043 6.483

TABLE II
THEORETICAL AND EXPERIMENTAL VARIANCES : 106υDBP

7.831 7.813 7.885 7.734 7.843 7.736 7.982 7.724
7.988 7.797 7.945 7.755 7.947 7.733 7.965 7.825
8.080 7.839 8.040 7.997 7.958 7.835 8.044 8.020
8.101 7.946 8.028 8.065 8.075 7.871 7.963 8.122
8.153 8.100 7.994 8.174 8.216 8.124 8.042 8.274

IV. CONCLUSION

The goal of this work was to exploit the non-equivalence of
the DBP and VFB methods, to improve the image quality. We
proposed to combine linearly the VFB and the DBP methods
to improve the reconstructed image variance and we gave
the expression of optimal coefficient λ∗x which minimizes the
variance of the combined function fλ

∗
in each point x. Since

the VFB and the DBP methods are not equivalent (they do
not use the same data subset [4]), it is very unlikely that the
optimal variance would be obtained by either of the two, and
therefore our theoretical analysis shows that combining the
two methods allows improved variance. The improvement in
the variance might be quite small, as these simulations show.

One limitation of these numerical results is the lack of
control of the resolution. It is important to consider issues of
noise/resolution trade-off. It seems reasonable that the linear
combination of two methods will produce a resolution function
which is an average of the individual resolutions, and thus
not worse than the poorer of the two resolutions. In principle
the variance is improved, but future work will need to more
carefully understand and regulate the noise/resolution trade-
off, especially for two methods with different resolutions.

Another limitation is the high computation time of the
procedure to calculate the optimal coefficients λ∗x. However,
it is only the calculation of the weight functions that is
time-consuming, and this can be done once for a fixed set
of reconstruction parameters (sinogram size, regularization
parameters). These fixed weight functions could be used to
calculate the optimal λ∗ coefficients for different scans (pro-
vided the variance in the sinogram can be reliably estimated).

There are several areas of future study. An important one
is to try to find a way to balance the resolution of the
two methods before optimizing the variance. Another is to
understand the sawtooth pattern of lambda values in the ROI.
Another study would be to investigate the robustness of the
optimal lambda values for different objects (with different
sinogram noise properties) for fixed reconstruction parameters.
Another study would be to investigate the sensitivity of the
variance of fλ

∗
(x) to the coefficients λ∗x for fixed x. We

anticipate the variance of fλ
∗
(x) to be fairly insensitive to

λ∗x.

TABLE III
THEORETICAL AND EXPERIMENTAL VARIANCES : 106υλ

∗

6.272 5.772 6.243 5.638 6.275 5.718 6.284 5.619
6.241 5.777 6.166 5.816 6.216 5.752 6.182 5.853
5.921 5.519 5.817 5.565 5.868 5.529 5.862 5.631
5.913 5.802 5.777 6.168 5.910 5.771 5.734 6.193
5.923 6.315 5.857 6.298 5.975 6.380 5.881 6.363

Fig. 3. Top line: VFB reconstruction of the ROI. Bottom line: the horizonal
profile. Red thick line: the true function, green thin line: the reconstruction.
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Fig. 4. DBP reconstruction of the ROI, and the central horizontal profile.

Fig. 5. Combined reconstruction fλ
∗

of the ROI, with horizontal profile.

Fig. 6. The VFB (line 1), and DBP (line 2) variances computed using
equation (3). The combined reconstruction variance (line 3) computed using
equation (7) and the percentage improvement of υλ compared to υV FB (line
4).
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X-ray source trajectories and their R-line coverage
for long-object CB imaging with a C-arm system

Zhicong Yu, Frédéric Noo, Frank Dennerlein, Günter Lauritsch, Joachim Hornegger

Abstract—The geometry of the helix has been successfully
applied in diagnostic CT for extended volume imaging without
cone-beam artifacts. However, it cannot be used for C-arm
systems due to the absence of slip-ring technology. For this
reason, the reverse helix was proposed recently for C-arm
systems, but efficient reconstruction from axially-truncated data
collected on such a helix appears to be challenging. The main
difficulty comes from the the missing R-line coverage in the
central region of the scanned object. More specifically, the reverse
helix is such that the theories that have been found for efficient
handling of axial truncation cannot be applied, because large
portions of the object are not intersected by R-lines

In this work, we revisit the option of performing extended
field-of-view imaging using a sequence of circular short-scans
connected by line segments. We find that the R-line coverage is
insufficient for a central region of interest when a line-segment
is tightly fit between parallel circular arcs. On the other hand,
extension of the line beyond the circular arc helps to increase
R-line coverage in the central region of interest. Therefore, we
propose a trajectory composed of two parallel circular arcs
connected by an extended line. This trajectory does have a nice
R-line coverage inside the ROI, but it has a discontinuity at
the endpoints of the line. To overcome this problem, we suggest
replacing the two parallel circular arcs by two helices, which
can be duplicated along the axial axis conveniently and which,
moreover, keeps the trajectory continuous and thus is more
practical.

I. I NTRODUCTION

Over the decade, cone-beam (CB) computed tomography
has become a valuable tool in interventional radiology. Its
success stems from its ability to provide the medical doctor
with immediate feedback during a clinical procedure, thereby
allowing on-the-fly adjustments. So far, circular data acqui-
sition has been used, but more sophisticated geometries are
being considered due to the problem of cone-beam artifacts
and also due to limited volume coverage.

An attractive geometry for extended volume imaging with
no cone-beam artifacts is the helix. This geometry has been
very successful in diagnostic CT, but is unfortunately not
practical for interventional radiology. The problem is the need
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for slip-ring technology, which is difficult to use (if possible
at reasonable cost) with C-arm systems. To perform extended
volume imaging with a C-arm system, another geometry must
be found. Many options are possible, from using a combination
of circles and lines, to using a reverse helix, as suggested by
the group of X. Pan at the University of Chicago [1]. The
reverse helix has many merits, but efficient reconstruction from
axially-truncated data collected on such a helix appears to be
challenging [1], [2]. The main difficult comes from the R-lines
not covering the whole scanned object (an R-line is any line
segment that connects two source positions together). More
specifically, the reverse helix is such that the theories that have
been found for efficient handling of axial truncation [3]–[6]
cannot be applied, because large portions of the object are not
intersected by R-lines.

In this work, we revisit the option of performing extended
field-of-view imaging using a sequence of circular short-scans
connected by line segments. In particular, we investigate R-line
coverage with the goal of finding source-trajectory parameters
such that a central region-of-interest within the object is fully
covered by R-lines.

The paper is organized as follows. First, we describe the
data acquisition geometry of interest. Next, we discuss R-line
coverage resulting from two parallel circular arcs, and also
R-line coverage resulting from connecting a line orthogonally
to the endpoint of a circular arc. From there, we are then
able to present the R-line coverage for the whole data acqui-
sition geometry. Our results show that some parameters allow
full coverage of a region-of-interest, but these parameters
unfortunately come with practical implementation concerns.
We discuss these concerns and potential remedies in the last
section.

II. DATA ACQUISITION GEOMETRY

We consider extended volume imaging using periodic du-
plicates of a source trajectory consisting of two circular arcs
connected by a segment of line. The patient is assumed to
lie along thez-axis, the arcs are in parallel planes that are
orthogonal to this axis, and the line is orthogonal to each arc
through one of its endpoints. Figure 1 depicts this trajectory.
Two options are considered: (a) the line is spatially limited
by the arcs, (b) the line extends beyond the arcs. Figure 1
also shows how each circular arc is oriented relative tox and
y-axes that form together with thez-axis a Cartesian system
of coordinates. The distance inz between the arcs is2 H , the
radius of the arcs isR, and the line extension in the second
path option is∆h on each side. Also, the planez = 0 is chosen
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to be at mid-distance between the two arcs. To avoid confusion
with other arcs that will appear later in the discussion, from
now on we will use the term S-arcs to refer to the arcs forming
the source trajectories.

III. E LEMENTAL R-LINE COVERAGE

In this section, we first discuss the R-line coverage resulting
from connecting points from one arc to the other arc. Next,
we discuss the additional coverage resulting from connecting
points on the line to points on the arcs. Note that our data
acquisition is symmetric relative to thez = 0 plane. Therefore,
the R-line coverage at positionz = z0 is the same as the
coverage atz = −z0 for any 0 ≤ z0 ≤ H . Hence, we only
discuss R-line coverage at positionsz ≥ 0.

A. Arc-to-arc coverage

To understand the R-line coverage in this case, we start by
considering the simpler case where each S-arc has a length
of 360 degrees. Figure 2 shows how the R-line coverage can
be found in this case. Locationz = 0.2 H is used for the
illustration but a similar result would be obtained at any other
z-location. Basically, we take a point on the upper S-arc, called
Ai

+, and connect it to all points on the lower S-arc. Doing so,
we create the surface of a cone that intersects the planez =
0.2 H along a circle. This circle defines the R-line coverage
coming from Ai

+ in the planez = 0.2 H . By moving Ai

+

along the upper S-arc, we obtain additional circles, as shown
on the right side of Figure 2. The union of these circles is
the full R-line coverage in the planez = 0.2 H ; this union
is an annular region with external boundary,C, corresponding
to the intersection between planez = 0.2 H and the cylinder
on which the source trajectory is drawn.Now, we consider the
case where the S-arcs are shorter. A length of230 degrees is
used for the illustrations; similar results would be observed
with other short-scan lengths. Figure 3 shows the coverage in
planez = 0.2 H , whereas figure 4 illustrates the coverage at
z = 0.

(a)

Oi

+

C

(b)

Fig. 2. Arc-to-arc R-line coverage when the length of the arcs is 360 degrees.
(a) Coverage in planez = 0.2 H due to one point from the upper S-arc; this
coverage is a circle centered on a point denoted asOi

+
in the figure. (b)

Coverage in the same plane as on the left, but due to several points on the
upper S-arc.

First, comparing figure 2a with figure 3a, we see that the
coverage fromAi

+ is not a full circle anymore, it is a circular
arc, which we refer to as an R-arc to avoid ambiguity between
such an arc and the S-arcs that form the source trajectory. By

moving Ai

+ along the upper S-arc, we obtain a union of R-
arcs that defines the R-line coverage atz = 0.2H . Identifying
the region covered by this union is not too complex. First, we
observe that the endpoints of the R-arc,Ah and Bh, move
along two arcs. The arc along whichAh moves is shown in
figure 3c; it is the intersection between the planez = 0.2 H
and the (open) cone surface that results from connectingAi

−

to the upper S-arc, whereAi

−
is the point on the lower arc

that is at the same(x, y) location asAi

+. The arc along which
Bh moves is shown in figure 3d; this arc is created from the
cone based on the upper S-arc and the endpointAe

−
on the

lower S-arc. Secondly, compared to figure 3, we illustrate the
variation of the R-line coverage along thez-axis by looking at
the planez = 0, as shown in figure 4. Using the same process
as in figure 3, we take a pointAi

+ on the upper S-arc and
connect it to the lower S-arc; with this procedure, we get a
surface consisting of a partial cone, which intersects with the
planez = 0 along a partial circular arc whose two endpoints
are denoted asAh and Bh. By moving Ai

+ along the upper
S-arc, we acquire the combination of R-arcs that forms the R-
line coverage in the planez = 0, as illustrated in figure 4b. The
identification of the R-line coverage in the planez = 0 could
be performed similarly to the case depicted in figure 3. The
difference is that the orbit of the endpointAh is the R-arc itself
corresponding to the pointAi

+ on the upper S-arc, as shown
in figure 4a; while the pointBh follows the dashed partial
circular arc as illustrated in figure 4c. Both tracks of points
Ah and Bh go through the center of the cylinder, on whose
surface the two S-arcs are located. Figure 4 also contains the
results of a numerical simulation. Combining the information
in figure 3, we observe that in planes orthogonal to thez-
axis, as|z| increases, the R-line coverage corresponding to
one point on the upper S-arc becomes smaller and the orbits
of the endpoints of the R-arc become larger, and thus the R-
line coverage aroundz axis becomes worse.

B. Arc-to-line coverage

In this subsection, we investigate another elemental data
acquisition geometry: a line orthogonally attached to a partial
circular arc at one of its endpoints. Recall from figures 1a and
1b that two S-arcs are symmetric relative to the planez = 0.
In this case, the R-line coverage resulting from connecting the
points on the line to points on the upper S-arc is symmetric
to that obtained from connecting the points on the line to
the points on the lower S-arc. Therefore, we consider here
only the R-line coverage that results from the line located
above the S-arc. Figure 5 depicts this R-line coverage. Here,
we used locationz = 0 and angular coverage230◦ as an
example, but a similar result could be obtain at any location
−H ≤ z ≤ H . Figure 5b shows the R-line coverage resulting
from the numerical simulation.

As observed, the R-line coverage of the arc-to-line in the
planez = 0 is a partial disk. Compared to Figure 4, we can
see the outline of the partial disk is actually the union of
the R-lines connecting the pointAi

+ to the lower S-arc in
Figure 4. The union of all the disks along the line is a cone
whose base is bounded by the lower S-arc and with peak at the
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(a) (b) (c)

Fig. 1. Data acquisition geometry. Extended volume imaging is performed using duplicates of a path consisting of two arcs plus a line. Two options are
considered for this path: (a) the line is tightly fit between the arcs, so that each endpoint of the line corresponds to one endpoint of an arc; (b) the line extends
beyond the arcs by a distance∆h on each side. (c) Orthogonal projection of the source trajectory onto thex− y plane.

(a) (c) (d)

O1
+

Ah

Bh

C

(b)

Bh

Ah

C

(e)

C

(f) (g)

Fig. 3. Arc-to-arc R-line coverage when the length of the arcs is 230 degrees. (a) Coverage in planez = 0.2H due to one point from the upper S-arc; this
coverage is a partial circular arc centered on a point denoted asOi

+
in the figure. (b) Coverage in the same plane as in (a), but due to several points on the

upper S-arc. (c) The track (the solid arc centered on the pointOi
−

) which Ah follows when moving pointAi
+

along the upper S-arc. It is the intersection
between the cone surface due toAi

−
and the planez = 0.2H. (c) The track (the dashed arc centered on the pointOe

−
) of Bh when moving the pointAi

+

along the upper S-arc. (e) Combination of arcs from (b), (c) and (d). (f) Additional outlines are needed for R-line coverage of the two S-arcs. The reason is
that when the R-arc moves along the C, due to the large angular coverage of the S-arcs,Ah andBh are not always the furthest point to thez axis. (g) the
numerical simulation result.

(a)

Oi

+

C

Ah

Bh

(b) (c) (d)

Fig. 4. Arc-to-arc R-line coverage when the length of the arcs is 230 degrees. (a) Coverage in planez = 0 due to one point from the upper S-arc; this
coverage is a partial circular arc centered on a pointOi

+
. (b) Coverage in the same plane as in (a), but due to several points on the upper S-arc. (c) The

track (the dashed partial circular arc) ofBh whenAi
+

moves along the upper S-arc. (d) the numerical simulation result.
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(a) (b) (c)

Fig. 5. Arc-to-line R-line coverage when the length of the arcs is 230 degrees. The line is attached to one of the endpoints of the S-arc. (a) Coverage in
planez = 0 due to one pointAi

+
. This coverage is a partial disk centered on a point denoted asOi

+
. (b) the numerical simulation result. (c) the union of

two symmetric cones of R-line coverage, which is resulting from connecting points on the line to the points on the two S-arcs.

point Ai

+. Due to the symmetry of the trajectory as illustrated
in Figure 1b, the R-line coverage between the line and the
upper S-arc would be an upside-down cone, congruent to that
between the line and the lower S-arc. The union of these two
cones intersected with thez = 0 plane is shown in Figure 5c.
As we can see, the R-line coverage resulting from connecting
points on the line to the two R-arcs has its minimum in the
planez = 0 and increases when|z| becomes larger.

To give a better understanding of the relation between the
R-line coverage of the two R-arcs and that of a line and an
S-arc, we offer an illustration in Figure 6. Here we choose the
plane at heightz = 0.2H as an example, but a similar result
could be obtained for any other locations with−H ≤ z ≤ H .
Figure 6 depicts the combination of R-lines from the elemental
trajectories: arc-to-arc and arcs-to-line . We observe that the
R-line coverage from the line and the S-arc and the R-line
coverage from the two S-arcs compensate each other quite
well.

(a) (b)

(c) (d)

Fig. 6. Combination of R-line coverage from arc-to-arc and arc-to-line. (a)
the outline of the R-line coverage from arc-to-line in the planez = 0.2H.
The small partial circular arc is due to the top endpoint of the line and the
big one due to the bottom endpoint of the line. (b) Coverage between the two
S-arcs. (c) Combination of R-line coverage of (a) and (b). (d) the numerical
simulation result.

IV. T IGHT L INE PLUS ARCS

Using the R-line coverage of the elemental trajectories, we
obtain the R-line coverage for the trajectory composed of two
parallel S-arcs and a tight line, as illustrated in Figure 1. Recall
from section III that the R-line coverage of the arc-to-arc and
the arc-to-line compensate each other quite well. However, the
R-line coverage of the arc-to-line has a minimum in the plane
z = 0 while the R-arc obtained by connecting one point on the
upper S-arc to the lower S-arc reaches a maximum length; the
R-line coverage of the arc-line-arc is worst in the planez = 0.
Figure 7 illustrates the R-line coverage of the arc-line-arc in
the planez = 0 with source-angular coverage of230◦ and
310◦. As we can see, the R-lines are not fully covering the
Region-of-Interest (ROI) for both angular coverages. In fact, as
long as the angular coverage is less than360◦, there is always
an angular space touching thez axis that is not covered by
R-lines.

(a) (b)

Fig. 7. Numerical simulation results of R-line coverage for two parallel
circular arcs plus a tight line (ALA). (a) R-line coverage of ALA in the plane
z = 0 with angular coverage of230◦. (b) R-line coverage of ALA in the
planez = 0 with angular coverage of310◦.

V. EXTENDED L INE PLUS ARCS

To overcome the problem mentioned in the previous section,
we here propose the trajectory composed of two parallel S-
arcs and an extended line as shown in Figure 1b. In this case,
the R-line coverage from an arc-to-line trajectory occupies a
larger area that can offer more R-lines in the central region.
How large the R-line coverage from an arc-to-line trajectory is
depends on how long the line extends beyond the two S-arcs.
Details will be given later in this section.
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First, we would like to show the numerical simulation result
of the R-line coverage for an arc-extended-line-arc trajectory
with angular coverage of230◦ and310◦ in Figure 8. Here for
the angular coverage of230◦ we use∆h = 0.832(2H) and for
the angular coverage of310◦ we use∆h = 0.485(2H). The
circle in the middle is the ROI corresponding to the angular
coverage of230◦. Compared to the simulation results depicted
in Figure 7, we can see the ROI is already fully covered.

(a) (b)

Fig. 8. Numerical simulation result of two parallel circular arcs plus an
extended line (AELA). (a) R-line coverage of AELA in the planez = 0
with angular coverage of230◦ and ∆h = 0.832(2H). (b) R-line coverage
of AELA in the planez = 0 with angular coverage of310◦ and ∆h =
0.485(2H).

We still have one open question: how far should we extend
the line, i.e., how large∆h should be? From the analysis in
seciton III, we can see that the R-line coverage of the trajectory
of two parallel circular arcs plus a tight line has its minimum
in the planez = 0. Therefore, we only investigate here the
R-line coverage for the arc- (extended)line-arc trajectory in the
planez = 0.

Suppose the desired ROI radius is given and denoted as
RROI. To be practical, we calculate the fan angle using
RROI and denote it asα. We first start from the short scan and
calculate the minimum∆h that is needed to cover the ROI;
then we increase the angular coverage of the trajectory and
see whether the value of∆h depends on the angular coverage
or not. Figure 9a illustrates the R-line coverage of the arc-line
that needed to cover the ROI. In this case, the R-line coverage
from an arc-to-line trajectory has to cover the whole ROI, and
thus we can calculate the minimum line extension using the
following equation:

∆h

2H
=

RROI

R − RROI
(1)

If ∆h is bigger than the value obtained from equation 1, we
get additional gain of R-line coverage in the central region, as
illustrated in Figure 9b.

With the increase of the angular coverage, the R-line cov-
erage from the arc-to-arc becomes larger in the planez = 0.
Therefore, at some critical angular coverage, the requirement
of ∆h is reduced. Comparing Figure 9a and 9c, pointK is
the intersection between the ROI and the circle centered on
the pointOi. In Figure 9a, pointK is on the boundaries of
the ROI and the missing R-line coverage region, but it is not
the furthest such point fromAe. However, when the angular
coverage increases, for example, in Figure 9b, pointK is the
furthest point fromAe such that it is still on the boundaries of

the ROI and the missing R-line coverage region. Connecting
point K and O and extending it along the direction from
K to O, we get an intersectionAc, as shown in Figure 9c;
we denote the corresponding angular coverage asθc. The
requirement for∆h changes when the angular coverage pass
throughθc. Suppose now the angular coverage is greater than
θc, as illustrated in Figure 9c, and draw a dashed circle through
pointsK andAe such that it is tangent to the big circle where
Ai andAe are located. Draw a line from pointAe to O and
intersect this line with the dashed circle at pointW . Letting
the distance betweenO and W be Rx, we can obtain the
minimum requirement of∆h using the equation below:

∆h

2H
=

rx

R − rx

. (2)

Similar to the situation in Figure 9b, if we adopt∆h larger
than the requirement shown in equation 2, we get an additional
gain of R-line coverage in the central region in the planez = 0,
as depicted in Figure 9d.

Let θ be the angular coverage, combining equations 2
and 1, we get a complete formula expressing the minimum
requirement for∆h:

∆h

2H
=

{

RROI

R−RROI
π + 2α ≤ θ ≤ θc

rx

R−rx

θc < θ ≤ 2π
(3)

Figure 10 depicts the minimum requirement for∆h for
different source-angular coverage according to equation 3. In
the figure, three differentRROI are used, i.e., 0.454R, 0.300R
and 0.156R. Figure 10 shows that when the angular coverage
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Fig. 10. Minimum∆h requirement for different angular coverage. Three
RROI are used, i.e.,0.454R, 0.300R and 0.156R, whereR is the radius
of the S-arc.

approaches360◦, the minimum requirement of∆h reduces
to zero. This is consistent with the conclusion in section III
that the two parallel circles plus an orthogonally attached tight
line has full R-line coverage. Although there is always a∆h
available to make sure that the ROI is fully covered by R-lines,
it is too expensive to do so when the angular coverage is too
small and the required ROI is too large, which could lead to
an impractical trajectory. However, for a trajectory with large
angular coverage and an ROI requirement that is not too great,
the two parallel circular arcs plus an extended line does offer
nice R-line coverage in the central region, while keeping the
cost of line extension low.
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(a) (b)

(c) (d)

Fig. 9. Relation between∆h andRROI (the desired radius of ROI), such that the R-line coverage of the arc-line covers the whole ROI in the planez = 0.
The minimum short scan here is design according to RROI. (a) The R-line coverage from the arc-line should at least cover the whole ROI for the minimum
short scan, and we denote the corresponding extension of line as∆hROI. (b) the increase of∆h leads to the increase of central R-line coverage as described
by the central dashed circle. (c) The R-line coverage from the arc-line is not necessary to cover the whole ROI thanks to the additional R-line coverage from
the arc-to-arc, when the angular coverage is bigger thanθc that corresponds toAc in the figure. (d) As in Figure (b), the increase of∆h will give us some
gain of the R-line coverage in the central region.

VI. CONCLUSION

We have investigated R-line coverage for a trajectory con-
sisting of two circles connected by a line. We have observed
that the R-line coverage is insufficient for a central region of
interest when the line is tightly fit between the circles. On
the other hand, if the line extends beyond the circle, we find
the nice result that there exists a central ROI that is fully

Fig. 11. Trajectory composed of two helices and a line.

covered by R-lines. How big this central region is depends
on how big ∆h is. Also, we have shown that some further
gain is achieved when the length of the short-scan is increased
beyond its minimal value. From a practical implementation
viewpoint, the line extension is not very satisfactory because
it requires a short pause in exposure. One way to circumvent
this problem is to replace the two S-arcs by helical arcs that
touch the extended line at its endpoints as shown in Figure
11. We have done preliminary numerical simulations with this
trajectory and have observed that it retains essentially the same
properties of the trajectory studied in this work, while being
more practical.
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Noise Properties of Grating Based X-Ray Phase
Contrast Computed Tomography

Thomas Köhler1, Klaus Jürgen Engel1, and Ewald Roessl1

Abstract— We investigated the noise properties of a grat-
ing based phase contrast imaging setup in simulations with
respect to its spectrum and the energy dependence of the
achievable contrast to noise ratio (CNR). The noise in re-
constructed phase contrast images shows a maximum at low
frequencies. The energy dependence of the CNR was eval-
uated by simulating measurements at constant dose for dif-
ferent energies. For a 11 cm size object, we found that the
CNR reaches a maximum around 50 keV.

I. Introduction

In conventional x-ray imaging, the contrast is generated
by the attenuation of the x-ray beam by the photoelectric
effect and the Compton effect. An alternative way to gen-
erate contrast is to measure the phase shift that an object
imposes on the “wave front” of an x-ray beam.

Although a number of phase contrast imaging (PCI)
techniques exist [1], PCI plays only a minor role in the
domain of medical imaging, mainly because of the strin-
gent requirements of known techniques on coherence and
monochromaticity of the x-ray beams. These are met by
synchrotron x-ray sources but unmet by conventional x-ray
tubes as almost exclusively used in the medical domain.
Recently, a technique well known in the visible range of
wavelengths has been adopted to the x-ray domain, the
so-called Talbot-Lau interferometry [2–4]. This technique
permits the use of conventional tubes and functions with
partially coherent beams generated by gold gratings placed
close to the x-ray tube’s exit window. Among all known
techniques of phase-contrast imaging in the hard (medi-
cal) x-ray domain, Talbot-Lau interferometry requires the
smallest coherence volume for phase-sensitive imaging [3].1

The grating based setup allows tomographic reconstruc-
tion of the three-dimensional distribution of the refractive
index [6–8]. The resulting images of biological samples like
a rat brain [6] or a rat heart [9] show excellent soft tissue
contrast that would likely add clinical value in diagnostic
imaging if it is applicable to human imaging.

Currently, experimental setups for grating based PCI use
x-ray energies in the range from 20 to 30 keV. For diagnos-
tic imaging, this energy range is useful mainly for mam-
mography. However, for other applications in radiology,
higher x-ray energies are required. Concerning the need
for higher energies, several comments are in order: Firstly,
gratings with higher aspect ratios are required, which are
more demanding to manufacture. Secondly, the phase con-
trast mechanism does not require absorption of photons.

1 Philips Technologie GmbH Forschungslaboratorien
1We do not consider here the alternative grating based PCI setup

proposed in [5].

Therefore, it is commonly argued that phase contrast imag-
ing potentially benefits from higher energies since fewer
photons are absorbed – at least if the photoelectric effect
dominates the total attenuation – and vice versa, more pho-
tons can be used for phase contrast imaging [1].

Noise in phase contrast x-ray imaging can be very differ-
ent to that of absorption contrast imaging as shown, e. g.,
in [10] for the case of propagation based PCI. In fact the
noise shows a broad spatial autocovariance profile, or, in
other words, there is a significant amount of low-frequency
noise.

The goal of the present work is to investigate the noise
features of tomographic grating based PCI, viz., the noise
spectrum and the energy dependence of the contrast to
noise ratio (CNR) that can be achieved.

II. Method

The setup for grating based PCI is show in Fig. 1,
where only the most important optical elements required
for phase contrast imaging are shown [2, 4]. A plane wave
of coherent x-rays hits the sample. Due to refraction, the
phase front behind the object is distorted. The distorted
wavefront passes a beam-splitter grating G1, which creates
a characteristic interference pattern at the location of the
analyzer grating G2. The interference pattern is imaged by
measuring the x-ray intensity using a detector D immedi-
ately behind G2 at several relative transverse positions of
the gratings G1 and G2.

Fig. 1. Grating based phase contrast CT setup.

A. Simulation

Fig. 2 shows the mathematical phantom used in the
study. The material compositions were taken from [11], and
the optical properties of these compositions were calculated
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Fig. 2. Phantom used for simulations. The diameter of the object is
110 mm.

based on the formulas given in [12] using atomic form fac-
tors tabled in [13]. The projection approximation [14] was
used to generate 721 monochromatic parallel beam projec-
tions over 180◦ with 1024 detector pixels covering 13 cm
field of view. For each projection angle, eight different rel-
ative positions of G1 with respect to G2 were simulated in
order to retrieve the absorption contrast and phase con-
trast images. The projections were simulated at four dif-
ferent energies from 25 to 85 keV assuming monochromatic
x-rays in order evaluate the energy dependence of the CNR.
The grating pitches were kept constant, whereas the dis-
tance of G2 to G1 was adjusted for each energy to the first
fractional Talbot distance (i. e., the distance was 40, 76,
108, and 140 mm, respectively). Noise was added to the
data sets such that for each energy the total dose deposited
into the object was constant, thus allowing for a meaning-
ful comparison of the CNR in the different reconstructed
images. The dose calculation was performed using a Monte
Carlo simulation considering photoelectric absorption and
Compton scattering.

B. Reconstruction

Reconstruction was performed using filtered back-
projection using a conventional ramp-filter for the absorp-
tion contrast image [15] and a Hilbert filter for the phase
contrast image [16]. In order to suppress aliasing, four
point interpolation was used during back-projection.

III. Results

A. Noise Power Spectrum

Since linear reconstruction methods are used here, the
noise power spectrum can be determined from projections
without an object. Projections with white Gaussian dis-
tributed noise were simulated and reconstructed. White
noise is appropriate since the processing in grating based
PCI to obtain the absorption projection and the differen-
tial phase contrast projection is performed on each detec-
tor pixel individually. Thus, no spatial correlation is in-
troduced by the processing. The reconstructed images are
shown in Fig. 3. The noise power spectrum of these images
is determined by 2D FFT followed by a binning into several
frequency bands of 3 lp/cm width and a calculation of the
total signal intensity in each frequency bin. The resulting
spectra shown in Fig. 4 are further normalized to the total
noise power in the image.

Fig. 3. Reconstruction of a noisy air scan. Left: Absorption contrast
image, right: Phase contrast image.
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Fig. 4. Noise power spectrum of the reconstructed absorption and
phase contrast images.

In order to illustrate one important aspect of the differ-
ent noise power spectra, a region of interest (ROI) of the
simulated phantom scan at 45 keV was reconstructed once
at system resolution (≈ 0.17 mm) and at lower resolution
(≈ 0.5 mm). The images are shown in Fig. 5. The noise
level in the absorption contrast images decreases by the
smoothing by a factor of 6.1, whereas the noise reduction
for the phase contrast image is only a factor of 2.0.

B. Energy Dependence of CNR

Fig. 7 shows an overview of the reconstruction results for
the absorption and phase contrast images. Note that there
are low-frequency artifacts in the phase contrast images
which are due to the very high gradient at the phase front
created by the object boundary, which cannot be recovered
properly. Fig. 6 shows the central part of the phantom
containing four objects which were selected for a detailed

Fig. 5. ROI reconstruction at 45 keV at system resolution (first and
third image) and at 0.5 mm resolution (second and fourth image) for
absorption contrast (left) and phase contrast (right).
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analysis of the CNR as a function of x-ray energy. This
analysis is shown in Fig. 8.

Fig. 6. Central region of interest of the images shown in Fig. 7. A
wider window than in Fig. 5 was selected to show the full dynamic
range of the region of interest. The display level was set to the value
of the background material.

IV. Discussion

The noise power spectrum of the phase contrast image
shows a maximum at low frequencies, see Fig. 4. This can
be easily understood from the reconstruction kernel used in
the reconstruction: The ramp filter used in absorption con-
trast imaging damps low frequencies and boosts the higher
frequencies leading to the well-known peak in the noise
power spectrum near the Nyquist frequency of the detec-
tion system (actually, due to the smoothing effect of inter-
polation during back-projection, the peak is well below the
Nyquist frequency of 39 lp/cm). On the other hand, the
Hilbert filter used in phase contrast imaging treats all fre-
quencies equally, leading to a higher noise power at lower
frequencies.2 One of the important implications of this fea-
ture for tomographic medical imaging is that the superior
CNR of phase contrast images compared with absorption
contrast as demonstrated in [6, 9] will diminish for appli-
cations, where a lower spatial resolution is required: In
absorption contrast imaging, noise and resolution can be
traded off very efficiently since smoothing also suppresses
the peak in the noise power spectrum. However, for phase
contrast imaging, smoothing only suppresses the tail of the
noise power spectrum and does not lead to a substantial in-
crease in CNR. For the example shown in Fig. 5, the CNR
of the absorption contrast image increases three times more
than in the phase contrast image. This effect should always

2Due to the inhomogeneous sampling of the Radon space and thus
also the Fourier space with a series of parallel projections, this equal
treatment of all frequencies does not lead to flat noise power spec-
trum.

be considered if the two modalities are compared with re-
spect to the achieved CNR. Regarding CNR, it should also
be noted that the noise in the phase contrast image can be
decreased by increasing the distance between G1 and G2 to
a higher fractional Talbot order because the sensitivity to
the gradient of the phase front is increased [2]. The price
to pay for this increase in CNR is that the phase wrapping
(that leads to the cupping and capping artifacts in Fig. 7)
will also appear at even smaller phase gradients and the
problem of unwrapping the phase gradient will become a
demanding task.3

The CNR of phase contrast images measured at con-
stant dose for the sample phantom are qualitatively very
similar: For all objects, the magnitude of the CNR shows
a maximum around 50 keV. The existence of a maximum
at a distinct energy independent of the object is caused
by several effects: First, the phase shift introduced by the
objects is exclusively created by the electron density with
an energy dependence of E

−1. Thus, it is expected that
the energy dependence of the CNR of all objects in the
phantom is qualitatively the same. The second cause is
the different contributions of the photoelectric effect and
Compton scatter to the total attenuation. For lower en-
ergies, the photoelectric effect dominates. However, it de-
creases approximately as E

−3, whereas the phase contrast
decreases only as E

−1. Thus, going to higher energies de-
creases the contrast in the phase image, but this is more
than compensated by the fact that at constant dose more
photons can be used for imaging since fewer of them are
absorbed. However, as soon as the Compton effect con-
tributes significantly to the attenuation at higher energies,
the total transmission decreases again and the decreasing
phase contrast is – in the constant dose scenario – no longer
compensated by an even faster decreasing absorption.

Herzen et al. [17] showed in experiments using several
different liquids that phase and absorption contrast im-
ages show complementary information in the sense that the
CNR is sometimes larger in the phase contrast image and
sometimes in the absorption contrast image. Our simula-
tion using material compositions of biological tissues con-
firms that this feature is relevant for medical imaging.
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Local tomography and the motion estimation
problem

Alexander Katsevich, Michael D. Silver, and Alexander A. Zamyatin

Abstract—We propose a novel motion estimation algorithm. It
works with a sufficiently short time window, which is typically
equivalent to that of a short scan. The center of the window
is taken as reference time. The problem is to estimate motion
within the window relative to the reference time. The proposed
algorithm is based on local tomography (LT). If there is some
uncompensated motion in f , the edges off and of the LT
function Bf in general do not coincide. This means that if
motion is not known (or, is known incorrectly), edges in the
reconstructed image spread out. A single edge inf produces
multiple edges in Bf at random locations. Consequently, the
reconstructed image will look chaotic. We can use a measure of
chaos in the reconstructed imageBf to tell whether our motion
model is accurate or not. The main idea is to iteratively refine
the motion model, so that chaos inBf is as small as possible.
The algorithm is quite flexible and is used also for solving
a misalignment correction problem. The results of numerical
experiments on motion estimation and misalignment correction
are very encouraging.

Index Terms—motion estimation, local tomography, iterative
reconstruction, cardiac CT.

I. I NTRODUCTION

Cardiac and, more generally, dynamic imaging is one of
the top challenges facing modern computed tomography (CT).
In cardiac CT there are two major groups of approaches
for dealing with this issue. One is based on gating. The
second approach, known as motion compensation, is based on
incorporating a motion model into a reconstruction algorithm
(see e.g. [1], [2], [3], [4]). Motion compensation algorithms
are preferable, because they use all data and have the potential
to provide good image quality with reduced x-ray dose. The
main difficulty of using such algorithms is that motion model
needs to be known. There are motion estimation algorithms
available, see e.g. [1], [5], [6], [7], [8] for the most recent
advances, but still significant research needs to be done to
improve efficiency, accuracy, stability with respect to noise,
flexibility, etc.

In this paper we propose a novel approach to motion
estimation, which is based on local tomography (LT). We
show that if any given edge in the unknown functionf is
seen from the data from two or more source positions, then
in the case of incorrectly known motion, the single edge
“spreads” and becomes a double edge. As a result, the image
looks more cluttered. Our main idea is to iteratively improve
the motion model so that image clutter is minimized. We

AK is with the Department of Mathematics, University of Central Florida,
Orlando, FL 32816. MS and AZ are with Toshiba Medical Research Institute
USA, Inc. Vernon Hills, IL 60061. Corresponding author: Alexander Katse-
vich, E-mail: akatsevi@mail.ucf.edu.

propose an empiric measure of clutter, which we call “edge
entropy”. The use of LT provides a number of benefits in terms
of computational efficiency, flexibility, and ability to handle
truncated data.

Let us mention some other attractive features of the pro-
posed approach. First, it is local in time. Motion estimation
is done inside a reasonably short time window, e.g., not
much longer than the length of a short scan. Second, the
approach is fairly general and can be used for several types
of motion, e.g., cardiac, breathing, etc. Finally, with simple
modifications the approach can be applied to solving other
practically important problems. As an example we show how
to solve a misalignment correction problem for a distorted
circular scan. A similar iterative algorithm, which is based
on Feldkamp inversion formula, is proposed in [9]. Since our
algorithm is based on LT, it is faster and it is not limited to
a source trajectory for which accurate and efficient inversion
formulas exist.

II. L OCAL TOMOGRAPHY (LT)

Let C be a smooth curve inR3

I 3 s → y(s) ∈ R3, |y′s(s)| 6= 0, (1)

whereI ⊂ R is an interval. Usually the source moves along
C with constant speed, so we identifys with time variable.

Fix any s0 ∈ I. We refer tos = s0 as the reference time.
Supposey = ψ(s, x) is the position of the particle at times,
which is located atx at the reference times = s0. We assume
that for eachs ∈ I the functionψ(s, x) : R3 → R3 is a
diffeomorphism. Physically this means that two distinct points
cannot move into the same position. This assumption is quite
natural, since cardiac motion is not infinitely compressible (see
e.g. [10]). The inverse ofψ is the functionx = µ(s, y) :
R3 → R3. It gives the original positionx of the particle at
the reference time, which is located aty at times. We assume
that bothψ and µ are identity maps outside of some open
set U , which contains the support of the object, andψ, µ ∈
C∞(I × R3). As usual, we assume thatC is at a positive
distance fromU . Obviously,

µ(s, ψ(s, x)) ≡ x, ψ(s, µ(s, x)) ≡ x. (2)

In what follows we use the convention that the operator∇ acts
with respect to space variables. Thus∇µ(s, y) = ∇yµ(s, y)
and∇ψ(s, x) = ∇xψ(s, x).
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Since matteris conserved, the x-ray density at times and
point y is given by|∇µ(s, y)|f(µ(s, y)). Hence the data are

Df (s, β) :=
∫ ∞

0

|∇µ(s, y(s)+tβ)|f(µ(s, y(s)+tβ))dt, s ∈ I,

(3)
whereβ runs through a subset of the unit sphere determined
by the detector.

Introduce the following LT function

(Bf)(x) =
∫

I

ϕ(s, x)
∂2

∂q2
Df (s, β(s, x + qΘ(s, x)))|q=0 ds,

(4)
where

β(s, x) =
ψ(s, x)− y(s)
|ψ(s, x)− y(s)| , (5)

Θ(s, x) : I × U → R3 \ 0 is a smooth function, and
ϕ ∈ C∞0 (I ×U). The functionΘ(s, x) specifies the direction
along which the data are differentiated. We establish several
properties of the LT functionBf . First, if motion is known,
useful singularities off andBf coincide (if they are visible
from the data). Suppose that instead of the motion function
ψ we know its approximationψε(s, x) = ψ(s, x) + εψ1(s, x).
We show that in this case useful singularities ofBf are shifted
by a distance of orderO(ε) away from those off and obtain
a formula for the shift.

III. A MOTION ESTIMATION ALGORITHM

As stated in the previous section, if there is some uncompen-
sated motion inf , the edges off andBf no longer coincide
and edges in the reconstructed image spread out. A single edge
produces multiple edges at several locations. Consequently, the
reconstructed image looks clattered or random. We can use
a measure of randomness in the reconstructed imageBf to
gauge whether our motion model is accurate or not. In what
follows we call this measure “edge entropy”. Using this idea,
we summarize the proposed motion estimation algorithm as
follows.

1) Assume some motion model;
2) Perform motion-compensated LT image reconstruction

using current motion model;
3) Compute edge entropy of the LT image;
4) If edge entropy is low (i.e., the edges have not spread too

much), stop. If edge entropy is high, change the motion
model and go to step (2).

A similar idea was used in [9] for misalignment correction
in circular cone beam CT. The main novelty of our approach
is that we use LT instead of global Feldkamp type (FDK)
reconstruction. On one hand, the use of LT allows us to
significantly speed up the iterations. On the other hand, many
tools that work with conventional images (most notably, image
entropy) do not work with LT images, so we had to develop
alternative tools from scratch. We now describe the key steps
of the algorithm in more detail.

A. Motion model

Let [sl, sr] ⊂ I be a parameter/time window, which is used
for motion estimation. The center points0 = (sl + sr)/2 is

taken as reference time. The primary purpose of the algorithm
is to perform local (in time) motion estimation, thus the width
of the window S := sr − sl is usually rather short. In our
experimentsS is typically less than one gantry rotation. Let
D ⊂ U denote the region where motion takes place. We
assume thatD is a rectangle, i.e.D := {(x1, x2, x3) ∈ R3 :
Lk ≤ xk ≤ Rk, k = 1, 2, 3}. To represent motion, we consider
a regular grid overD. The grid planes are

xk = ζik := Lk + i∆xk, 0 ≤ i ≤ Nk + 1, k = 1, 2, 3, (6)

where∆xk = (Rk − Lk)/(Nk + 1) is the step-size along the
k-th axis. Thus, grid (6) hasN1N2N3 interior nodes, and for
each directionk there areNk + 2 planesxk = ζ0k, · · · , xk =
ζNk+1,k. Because of motion, the grid planes deform over time:

x1 = ζi1 + ai1(s)φ[(x2 − L2)/(R2 − L2)]
× φ[(x3 − L3)/(R3 − L3)], 1 ≤ i ≤ N1,

x2 = ζi2 + ai2(s)φ[(x1 − L1)/(R1 − L1)]
× φ[(x3 − L3)/(R3 − L3)], 1 ≤ i ≤ N2,

x3 = ζi3 + ai3(s)φ[(x1 − L1)/(R1 − L1)]
× φ[(x2 − L2)/(R2 − L2)], 1 ≤ i ≤ N3.

(7)

Each line in (7) defines a separate surface, which corresponds
to a deformation of one of the original planes (6). We assume
that motion equals zero at the boundary ofD, so the boundary
grid planes (i.e. those given byxk = ζik, i = 0 or Nk + 1,
k = 1, 2, 3) do not deform. In (7), the functionφ is smooth,
defined on the interval[0, 1], and equals zero at both endpoints
of the interval. Since the time window[sl, sr] is sufficiently
short, we assume that the functionsaik(s) are linear:

aik(s) = aik(s− s0)/(0.5S), k = 1, 2, 3, (8)

where aik, 1 ≤ i ≤ Nk, k = 1, 2, 3, are constants to be
determined. Equations (7) and (8) allow us to describe motion
of every point inD. To determine where a node from the
original grid (6) is located at times, we identify the three
planes where the node is located, deform them according
to (7), and then find the point of intersection of the three
resulting surfaces. Location of all other pixels is computed
using trilinear interpolation.

B. Edge entropy

Suppose Bf is computed on a regular grid
(xi1 , xi2 , xi3), 1 ≤ ik ≤ Mk, k = 1, 2, 3, which covers
D. Suppose, for simplicity, that the step-size of the grid is
the same along every axis and equals∆x. Nodes of the
grid are denotedxI := (xi1 , xi2 , xi3), whereI = (i1, i2, i3).
Of course, this grid should be much more dense than the
one in (6) (Mk À Nk). We also need a shifted grid with
nodes x̄I := (x̄i1 , x̄i2 , x̄i3), where x̄ik

= xik
+ ∆x/2,

1 ≤ ik ≤ Mk−1, k = 1, 2, 3. Introduce the distance function:

dist(x̄I , x̄J) = max(|i1 − j1|, |i2 − j2|, |i3 − j3|). (9)

Calculation of edge entropy consists of several steps. Let
parameterκ, 0 < κ < 1, be fixed.

1) Using finite differences, compute the norm of the gra-
dient at the nodes of the shifted grid|∇(Bf)(x̄I)|;
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2) Computethe empirical histogram of the norm of the
gradient;

3) Using the histogram, estimate the valueM such that
|∇(Bf)(x̄I)| > M for 100κ percent of the points (such
points are called “bright”);

4) By running a sliding window over the image compute
the total number of points̄xI whose distance (in the
sense of (9)) to the closest bright point equals either 2,
3, or 4;

5) Divide this number by the total number of nodes in the
grid and multiply by 100 (to get percents). The result is
the edge entropy of the imageBf .

IV. N UMERICAL EXPERIMENTS

The original phantom is a superposition of seven balls (to
save on space, images of the phantom are not shown here).
The motion of the medium is described by the function

ψ(s, x) = x +





25 cos(0.35(s− s0))Θ, |x| < 10,

25 cos(0.35(s− s0))
75−|x|

65 Θ, 10 ≤ |x| < 75,

0, |x| ≥ 75;

Θ = (cos θ2 cos θ1, cos θ2 sin θ1, sin θ2).
(10)

Heres0 is reference time,θ1 = 70◦, θ2 = 30◦. In this section
the units of length are always mm. The detector array is curved
and passes through the isocenter. Pixel size on the detector is
0.5 along columns, and10−3 radians along rows. The source
trajectory is circular:x1 = R cos s, x2 = R sin s, x3 = 0,
and the source to isocenter distance isR = 600. There
are 1000 projections per one rotation,0 ≤ s < 2π. The
time corresponding to projection 501 was chosen as reference
time: s0 = π. For motion estimation we used only the data
corresponding to the range of projections [101,900]. Following
the common practice in medical imaging, we did not track the
changes in density due to motion (see e.g., [10], [11]). This
is equivalent to setting|∇µ| = 1 in equation (3).

The functionBf is computed on the112×112×112 regular
grid covering the cube−75 ≤ xk ≤ 75, k = 1, 2, 3. To make
the resulting algorithm as numerically efficient as possible,
we use the simplest version of the motion compensated LT.
To this end the derivative∂2/∂q2 in (4) is replaced by the
second derivative of the cone beam data along detector rows.

Let Dl be a box-like region bounded by six neighboring
planes (6). As is easily seen, the values ofBf(x) for all x ∈ Dl

depend only on the six parameters describing the deformation
of the six planes that form its boundary. Minimization of edge
entropy uses this observation and is done using the following
approach.

Step 1. Letaik, i = 1, . . . Nk, k = 1, 2, 3, be the current
best estimate of the motion parameters. Let some∆a 6= 0
be given. Pick one of theDl’s. Let ai1k1 , . . . , ai6k6 be the six
parameters affecting the chosen region. Compute36 subimages
Bf(x), x ∈ Dl, corresponding to the sets̃ai1k1 , . . . , ãi6k6 ,
where each̃aik equals eitheraik, or aik −∆a, or aik + ∆a.
Store all the subimages on the disk, and repeat for allDl’s.

Step 2. Run the loop over all3N1+N2+N3 sets aik, i =
1, . . . Nk, k = 1, 2, 3, where each̃aik equals eitheraik, or

aik−∆a, or aik +∆a. This is done by reading the appropriate
subimages from the disk and combining them into a single
image ofBf(x), x ∈ D. Then compute edge entropy for the
obtained image. From the3N1+N2+N3 sets of parameters find
the one which produces the image with the smallest entropy.

Steps 1 and 2 constitute a single iteration. The initial
values ofaik are chosen to be zero (which is the no motion
assumption). The value of∆a is chosen from somea priori
considerations. After the end of each iteration, the optimal
set of parameters identified at Step 2 is passed on to Step 1.
Also, the value of∆a is decreased. In our experiments we
used∆ainitial = 10, ∆anew = 0.75∆aold, and three iterations
were performed.

Fig. 1. Left panel: density plots ofBf at the beginning of iterations, i.e.
when zero motion is assumed. Right panel: corresponding images of bright
points. Top to bottom: cross-sectionsx1x2, x1x3, and x2x3 through the
center of the grid. Entropy 9.81%.

Results of experiments are shown in Figs 1 and 2. Fig. 1
shows the initial image ofBf computed under the (incorrect)
assumption of no motion. Fig. 2 shows the final image ofBf
computed for the motion model, that was determined by the
algorithm. In these experiments we usedN1 = N2 = N3 = 4
(cf. (7)). We usedκ = 0.0125 to compute edge entropy. At the
beginning of iterations (Fig. 1) the value of entropy is 9.81%,
and at the end - 8.40% (Fig. 2).

Application of the proposed approach for solving a mis-
alignment correction problem will be presented at the con-
ference. In the case of noise-free (or low noise) data, the
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Fig. 2. Left panel: density plots ofBf at the end of iterations. Right panel:
corresponding images of bright points. Top to bottom: cross-sectionsx1x2,
x1x3, andx2x3 through the center of the grid. Entropy 8.40%.

algorithm based on LT as outlined above works well. If data
are sufficiently noisy, the proposed scheme is unstable. A more
stable modification of the scheme and the results of testing on
noisy data will also be presented at the conference.
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Abstract—We present a new idea to enhance temporal resolution 
in CT beyond the short-scan limit by making use of a positivity 
constraint. If the moving objects are seen against an empty back-
ground, it can be demonstrated that an iterative reconstruction 
scheme which makes use of the positivity constraint in the image 
domain can image objects sharply even when they are stationary 
only for one third of the rotation time of the CT scanner.  This 
idea can be propagated further by decomposing an object con-
sisting of small moving parts against a large stable background 
into these components and making use of the positivity constraint 
in for the reconstruction of the moving part. 
  
Index Terms—Computed Tomography, Temporal Resolution, 
Positivity Constraint, Iterative Reconstruction 

I. INTRODUCTION 
MAGING the heart remains a challenge for Computed Tomo-
graphy, even after the introduction of fast-rotating multi-

slice scanners. Dual-source CT were introduced which consis-
tently cuts temporal resolution by half [1]. Downside of these 
scanners, of course, is the substantial hardware effort needed 
which makes this technology prohibitive for the budget 
minded customer, which prefer single source multislice scan-
ners. For these devices, different iterative reconstruction algo-
rithms were proposed. Besides [2] motion compensated recon-
struction, which uses all projections for the final reconstruc-
tion, but requires the time consuming estimation of motion 
vector fields, a compressed sensing technique [3] was recently 
proposed to increase temporal resolution. This technique uses 
a sparsifying transform to optimize iteratively a combination 
of a smoothness constraint, a constraint of a prior image and a 
constraint matching the forward projection of the image to 
data less than a short-scan.  

Goal of this paper is to propose an alternative algorithm 
which is also based upon using as little data as possible for the 
final reconstruction but is potentially more robust and easier 
to implement than the other two algorithms. 

II. BASIC IDEA OF THE ALGORITHM 
The basic idea of the algorithm is simple: Suppose we were 

imaging a set of small moving objects without any 
background attenuation. In the images reconstructed with 
FBP, motion artifacts would show up as positive and negative 
patterns around the moving objects. Using an iterative recon-
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struction scheme which simply requires the image to match 
data from a subset of a short-scan interval (e.g. 120°) will not 
help to suppress these artifacts, because they are consistent 
with the data: positive and negative parts will approximately 
cancel in the forward projection. However, this cancellation 
will be thrown off balance if we impose a positivity constraint 
by simply setting the negative parts to zero after each itera-
tion. This will have the effect that also the positive parts of the 
artifacts reduce in order to match the data with the forward 
projection of the image. As we will demonstrate in this paper, 
this will lead to a substantial improvement in image quality. 

Using Iterative Filtered Backprojection [4] as the standard 
reconstruction algorithm, the update formula of the iteration 
would then be 
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Here, D stands for projection data of a short-scan interval or 

a subset of it, depending on the index. FBP is the Filtered 
Backprojection operator. Proj(fk) denotes the forward projec-
tion operator, α is an iteration relaxation factor. The projec-
tion based update formula is alternated with imposing the non-
negativity constraint. 

Our idea can also be used with other iterative reconstruction 
algorithms, such as SART and SIRT [5]. In this case, starting 
with an empty estimate image f0 (i.e., an image that contains 
only zeros) is also possible. 

III. EXTENSION OF THE ALGORITHM TO MORE GENERAL 
OBJECTS 

In clinical practice, of course, the scanned object is not a 
collection of moving objects with no background attenuation. 
Usually, we face a set of small objects superimposed over 
relatively smooth background attenuation. In this section we 
sketch two approaches how the basic idea of the algorithm can 
be applied to more realistic data sets.  

A. Sinogram Decomposition 
Our first approach was to separate moving and non-moving 

objects in the sinogram. The first step is then to decompose 
the sinogram D into two sinograms: 
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(2) highlow DDD += , 

so that 
(3) 0>highD . 

Thus we obtain the attenuation from the moving objects in 
the partial sinogram Dhigh while the nearly stationary back-
ground containing only low spatial frequencies is contained in 
Dlow. Once this is achieved, we can reconstruct the two parts 
separately: Dlow is reconstructed in a standard way, e.g. using 
an FBP short-scan reconstruction. With Dhigh, we can proceed 
as sketched in section II. Essential for this, of course, is the 
positivity constraint of equation (3). One additional require-
ment should be that the low frequency sinogram Dlow is con-
sistent in the sense that its reconstruction with FBP yields an 
object with finite support. The final image is then the sum of 
the two partial images. 

B. Using a Histogram Constraint 
A reliable decomposition of the sinogram into a moving 

and a non-moving part proves to be difficult. Therefore we 
propose to use an extension of the positivity constraint to a 
more general histogram constraint. In [5], [6] it was shown 
that a good reconstruction of objects that are located outside 
the boundary of the CT field-of-view (FOV) can be obtained 
by combining an iterative reconstruction with a histogram 
constraint. The algorithm presented in these publications parti-
tions the image into regions inside and outside the FOV and 
uses the image gray-scale distribution inside of the FOV as a-
priori information for the image values outside of the FOV for 
a statistical reconstruction algorithm. 

Our approach, which we have dubbed “Temporal Resolu-
tion Improvement Method” (TRIM), employs this principle 
for the goal of a enhancing the temporal resolution of CT im-
ages. A flow chart of the algorithm is shown in figure 1: First, 

a cardiac short-scan reconstruction of the moving object is 
performed, resulting in a temporal resolution of 180° of re-
binned data. This 180° image is partitioned into smaller re-
gions, for each of those regions the corresponding histogram 
is computed. Afterwards, an iterative reconstruction using 
only a subset of the short-scan interval is performed. After 
each iterative step an additional step is performed where the 
gray scale values in each image region are manipulated such 
as to approximately correspond to the respective histogram of 
the 180° image. The underlying assumption here is that the 
shape of the histogram of the image does not change signifi-
cantly in the presence of motion artifacts.  

IV. RESULTS 
We have performed some preliminary studies to evaluate 

the feasibility of our idea and have obtained encouraging re-
sults. Some of the experiments we have performed will be 
presented in this section.  

A. Reconstruction with Positivity Constraint 
For our experiments involving the positivity constraint dis-

cussed in section II we have used two different simulated 
moving objects, which we have reconstructed using a re-
binned two-dimensional SART algorithm. The positivity was 
enforced after every iterative step. Our first experiment in-
volved a phantom which consists of several high-contrast in-
serts representing vessels filled with contrast-agent. The high-
contrast objects remain at fixed positions for a scan-range of 
120° and then start a linear movement towards the image cen-
ter. A depiction of an FBP reconstruction of the phantom from 
static data serving as a reference image is shown in figure 2. 
An FBP cardiac short-scan reconstruction of the phantom 
from data with simulated object movements is depicted in 
figure 3, while an SART reconstruction with positivity con-
straint from 90° of rebinned data after seven iterations is 
shown in figure 4. The same two images using a different, 
narrower gray-level window are again shown in figures 5 and 
6. 

In the SART reconstructed images, a significant reduction 
of motion artifacts can be observed. It is also discernable that 
the limited angle of projections used for the SART image 
leads to a slightly non-isotropic resolution. However, the ad-
vantage of having virtually no motion artifacts in the SART 
reconstruction should prevail over the disadvantage of getting 
a non-isotropic resolution.  

The second phantom was employed to study how internal 
structures of moving objects are reproduced by the method. It 
consists of a cylinder of the same density as the high contrast 
objects of the first phantom located near the isocenter with a 
smaller cylindrical off-center insert (see figure 7 for a refer-
ence FBP reconstruction from non-moving data). In the data 
sets with simulated motion, the object was held static over a 
scan range of 135° and then started a linear motion similar to 
the small objects of the first phantom. 
We again display the reconstructions of the second phantom 
from moving data in two different gray scales to demonstrate 

(         )  

cardio CT data 
 
 
 
 
 
 

subset of cardio 
CT data 

 

 low temporal 
resolution image 
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Figure 1: Flow chart of the TRIM algorithm. 
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the effect of using a positivity constraint. FBP cardiac short-
scan reconstructions are shown in figures 8 and 10, while 
SART reconstructions using the positivity constraint from 
120° of rebinned data after 15 iterations are depicted in figure 
9 and figure 11.  
 
 
 
 

 
Figure 2: Reference FBP reconstruction of the first phantom from static data. 
 

 

 
Figure 3: FBP cardiac short-scan reconstruction of the first phantom from 

moving data. Window: [-950 HU, -250 HU] 
 

 
 
 
 
 
 
 
 
 

 
Figure 4: SART reconstruction with positivity constraint of the first phantom. 

Window: [-950 HU, -250 HU] 
 

 
Figure 5: FBP cardiac short-scan reconstruction of the first phantom.  

Window: [-1050 HU, -950 HU] 
 

The first international conference on image formation in X-ray computed tomography 191



  

 
Figure 6: SART reconstruction with positivity constraint of the first phantom. 

Window: [-1050 HU, -950 HU] 
 
 

 
Figure 7: FBP reference reconstruction of the second phantom from static 

data, window: [0 HU, 1400 HU] 
 
 

 
Figure 8: FBP cardiac short-scan reconstruction of the second phantom from 

moving data, window: [0 HU, 1400 HU] 
 

 
Figure 9: SART reconstruction with positivity constraint of the second phan-

tom, window: [0 HU, 1400 HU] 
 
 

 
Figure 10: FBP cardiac short-scan reconstruction of the second phantom, 

window: [-1050 HU, -950 HU] 
 
 

 
Figure 11: SART reconstruction with positivity constraint of the second phan-

tom from moving data, window: [-1050 HU, -950 HU] 
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Figure 12: FBP cardiac short scan reconstruction of the moving phantom with 

background, window: [-700 HU, 700 HU] 

B. TRIM Reconstructions 
For a preliminary evaluation of the TRIM algorithm we 

modified the vessel phantom that we used for the first experi-
ment above by adding some background structure at two dif-
ferent attenuation values. Furthermore, we added small off-
center inserts to the moving vessels (similarly as in the second 
phantom above). The high-contrast objects remained again at 
a fixed position for a scan-range of 120° and then started mov-
ing towards the image center at constant speed. 

Figure 12 displays a FBP cardiac short-scan reconstruction, 
while the result of the TRIM algorithm using 120° of rebinned 
data is shown in figure 13. A clear reduction of motion arti-
facts in the TRIM image compared with the FBP cardiac 
short-scan image can be observed.  
 

V. CONCLUSION 
We have presented a new idea to perform a CT reconstruc-

tion with enhanced temporal resolution from less than 180° 
data. Our idea is based on enforcing a positivity or histogram 
constraint in an iterative reconstruction algorithm for small 
moving objects. Our primary evaluations have yielded promis-
ing results. 

The main task is now to further refine the algorithm, espe-
cially with a view to processing cone-beam data, as well as to 
perform further evaluations with simulated and clinical data. 
However, since this abstract constitutes a report about a work 
in progress, we hope to be able to report on progression on 
these tasks by the time of the conference.  

 
Figure 13: TRIM reconstruction of the moving phantom with background, 

window: [-700 HU, 700 HU] 
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Simple ROI Cone–Beam Computed Tomography
Michael Knaup, Clemens Maaß, Stefan Sawall, and Marc Kachelrieß

Abstract—High spatial resolution and large field of measure-
ment are often contradictory demands, especially in x–ray cone–
beam CT. On the one hand the number of detector elements
are limited to typically 1024 × 1024 to 4096 × 4096. On the
other hand CT requires to completely cover the lateral field of
measurement (FOM) with the detector. If the number of detector
elements in the lateral direction is calledM and the diameter
of the field of measurement isD the spatial resolution that can
be achieved is in the order ofD/M .

Zooming into an object by a factor of 10, say, which can be
done by decreasing the distance of the focal spot to the isocenter
by the same factor, however yields truncated projections. We
developed and implemented three methods that use a priori
information from a low resolution overview scan to compensate
for the data missing in the high resolution scan. These are
the data completion, the data filtering, and the data weighting
method. Thereby we were aiming at a robust and efficient solution
with high image quality and high computational performance.

I. I NTRODUCTION

A IMING at high spatial resolution in objects with a large
transversal diameter requires to challenge the problem

of transversal data truncation. For example the specific case
we are interested in are objects fitting into aDL = 60 mm
diameter field of measurement (FOM) that shall be scanned
with a circular cone–beam CT scanner whose flat detector
consists of2000×2000 elements. A standard scan would allow
us to achieve a spatial resolution of roughly 30µm assuming
the focal spot size to be small enough. However, we are aiming
at high–resolution imaging aDH = 6 mm diameter region of
interest, the ROI, with roughly 3µm spatial resolution. To
zoom into the object and increase the scanner’s magnification
by a factor of 10 the distance of the focal spot to the isocenter
can be reduced by the same factor, for example. The projection
datapH of this high resolution scan are, however, truncated
in the lateral direction. To compensate for the information
missing in the high resolution scan we use the projection data
pL of the standard or overview scan, which we will refer to
as the low resolution scan in the following.

For some objects or scanner geometries, and for large zoom
factors, it may happen that the x–ray source or the detector
would collide with the object during the high resolution circle
scan. To workaround this problem one could use object–
dependent non–circular trajectories, as we did propose in
reference [1] several years ago. Due to practical reasons
and due to the scanner design constraints we are, however,
restricted to certain scan trajectories (in our case circle scans
or spiral scans). To avoid collision we can neither acquire a
full 360◦ data set nor even a 180◦ data set, in general. Hence
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rieß: Institute of Medical Physics (IMP), University of Erlangen–Nürnberg,
Henkestr. 91, 91052 Erlangen, Germany.
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Fig. 1. State–of–the–art dimensional CT scanner used for our studies. The
scanner is capable of CT rasterization and of ROI tomography. It acquires in
circular and spiral mode.

it may happen that the high resolution scan is a limited angle
scan that further suffers from lateral data truncation.

The literature describes several methods to do region–of–
interest CT, which means to perform reconstruction from
truncated data. All methods deal with the truncation problem
and do not allow for a limited angle high resolution scan.

All practical solutions described make use of the low
resolution datapL to complete the data missing inpH. This is
either done in the rawdata domain itself, e.g. by rebinning, or
it is done by reconstructing the low resolution data to obtain a
low resolution volumefL which then can be forward projected
using the geometry of the high resolution scan to provide
rawdata that completespH [2], [3], [4], [5], [6], [7].

Further on, there are numerous methods that seek recon-
structing from the high resolution data only without having
low resolution overview scans available. Those are either of
truncation–correction type with some kind of extrapolation
designed for diagnostic purposes which yield less quantitative
results [8], [9], [10], [11], [12], [13] or they are mathematical
tweaks including some approximation or highly restrictive a
priori assumptions [14], [15], [16]. A promising new interior
tomography approach is based on compressed sensing which,
however, requires long reconstruction times and the assump-
tion of piecewise constant objects [17], [18], [19]. Due to
these undesired properties these methods are considered to
be impractical for our purposes and therefore not within the
scope of this paper.

In principle, the first class of algorithms, that makes full
use of the low resolution overview scan, provides adequate
image quality for our purposes. However, one will run into
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significant performance problems whenever the focal spot
trajectory of the high resolution scan approaches the convex
hull of the object. In this case the fan angle of the completed
high resolution scan approaches 180◦ and a very large number
of additional detector channels would be needed to complete
the truncated region of the high resolution scan.

While one can certainly sidestep those issues, e.g. by using
a virtual curved detector in place of a flat detector or by
performing the forward projections on a sparse grid instead
of using the high resolution grid, we propose two simple
rawdata–based methods that require reconstructions ofpL but
that do not require forward projections at all. It should be noted
that our methods can easily be combined with the possibility
of laterally shifting the detector to increase the object coverage
or the spatial resolution by another factor of two [20], [21],
[22], [23]. In this study, however, we did not make use of this
option and only deal with data from non–shifted detectors.

II. M ATERIALS AND METHODS

We discuss the reconstruction of cone–beam CT data of the
form

p(α, ϑ, γ) =

∞
∫

0

dλ f(s + λΘ)

with s = s(α) being the source position at time (or angle)α
and

Θ =





− sinϑ cos γ
cosϑ cos γ

sin γ





being the direction vector of a ray emerging ats(α) in the
direction specified by the anglesϑ and γ. The rawdata are
denoted asp(α, ϑ, γ) and the object to be reconstructed is
f(r). Due to the limited detector size we will conduct two
scans of the above type. One overview scan which covers the
complete object and thereby results in low resolution data and
one high resolution scan that covers only an ROI of the object.
We use the subscripts L and H to distinguish between both
scans.

Aiming at Feldkamp–type approximate image reconstruc-
tion we assume the source trajectory to approximately lie in
a plane parallel to thex–y–plane and we assume the rotation
axis to be parallel to thez–axis. Note that even if the scanner
is performing exact circle scans the rotation axes of the low
resolution overview scan and the high resolution scan do not
necessarily coincide because the rotation center of the high
resolution scan is determined by the position and size of the
ROI.

Since we perform approximate and Feldkamp–type image
reconstruction the angleγ of the ray is used for length
correction only. It does not play a role in the data consistency
and weighting criteria discussed below. Therefore we may
safely dropγ in the following and restrict ourselves to in–
plane considerations, i.e. to the two dimensionsx andy.

To achieve data consistency and to define appropriate
weighting functions it is necessary to parameterize a ray by
its angleϑ and its distanceξ with respect to the origin of the

coordinate system. Whileϑ is already well defined we obtain
ξ as a function ofs andϑ as

ξ = s · ϑ = sx cosϑ + sy sin ϑ

where we defined

ϑ =

(

cosϑ
sin ϑ

)

.

The ray specified byϑ andξ is the line

x cos ϑ + y sinϑ = ξ.

Image reconstruction can be performed if the data are
complete and if data redundancies are properly normalized by
defining a weighting functionw(ϑ, ξ) that is zero wherever
rays are missing and that fulfills

∑

k

w(ϑ + kπ, (−)kξ) = 1, (1)

as discussed in reference [23].
Although the methods presented work for general focal

spot trajectories the CT scan modi we have in mind rather
perform approximate circular scans. Restricting ourselves to
such trajectories later allows us to formulate explicit equations
for the weighting functions, which is more convenient for the
reader. Therefore we introduce the circle trajectories

sL(α) =





RFL sinα
−RFL cosα

0



 and sH(α) =





RFH sin α
−RFH cosα

0



 + o

with RF denoting the radii of the low and the high resolution
scan trajectories, respectively, and witho being the isocenter
of the high resolution scan. We make use of these when
defining the weight functions below.

In total we compare three different methods to perform
ROI tomography when sufficient overview data are present:
the data completion method which is in wide use already, the
data filtering method, and the data weighting method. To our
knowledge, the last two methods are new.

A. Data Completion Method

The classical data completion methods perform a forward
projection of a low resolution overview volumefL to complete
data missing in the high resolution scan. While this is typically
done to complete truncated data the same procedure could be
used to solve the limited angle problem. As mentioned above
the data completion may suffer from low performance and
require a significant amount of memory.

To become more formal let us introduce some notation. Let
XL denote the x–ray transform corresponding to the overview
scan and letfL = X

−1

L pL be the said overview volume
reconstructed from the measured low resolution datapL. Let
XH = XM + XU be a decomposition of the high resolution
x–ray transform into rays that have beem measured and those
that are unmeasured. The high resolution projection data are
denoted aspH which we assume to be zero for all unmeasured
rays, i.e. in the truncated region and in the regions where the
projection angles are missing.

Using this notation the data completion method is given by
the equation

fH = X
−1

H (pH + XUfL). (2)
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B. Data Filtering Method

Equation (2) is equivalent to

fH = fL + X
−1

H (pH − XMfL)

because we havefL = X
−1

H (XUfL +XMfL) due to the linearity
of the x–ray transform. The latter equation, however, has a
different interpretation. It implies that the rawdata obtained
by forward projection of the overview scan are subtracted
from the measured high resolution rawdata in the measured
region(s), and that those rawdata are reconstructed and added
to the low resolution overview images.

While this sounds interesting a closer look at the subtraction
term

pH − XMfL

reveals that it is the difference between high resolution mea-
sured rawdata and low resolution virtual rawdata and thereby
must be equivalent to a high–pass filtering of the measured
data. Ifh denotes an appropriate high–pass filter then we may
summarize our findings as

pH − XMfL = h ∗ pH.

Hence, we can obtain the high resolution reconstruction as

fH = fL + X
−1

H (h ∗ pH) (3)

which does not involve any forward projections.
To find the appropriate high–pass filter let us go to Fourier

domain and letMTFL(u) andMTFH(u) be the presampling
MTFs of the low resolution overview scan and of the high
resolution ROI scan, respectively, both being scaled to the
isocenter. Then, the high–pass filterH(u) should have the
property

MTFL(u) + MTFH(u)H(u) = MTFH(u).

Solving for H(u) yields

H(u) = 1 −
MTFL(u)

MTFH(u)
.

Note that the simplicity of the data filtering method is
appealing. Although the method is analytically equivalent
to the completion method this is not true numerically. The
downside of the data filtering method is increased image noise
and increased susceptibility to artifacts in the high resolution
region since the method just adds a correction term to the low
resolution data and thereby cannot eliminate image noise or
artifacts inherent infL .

C. Data Weighting Method

Our third method has two advantages: the advantage of the
data completion method of not having artifacts propagating
into the high resolution ROI and the advantage of the high–
pass filtering method of being computationally highly efficient.
This is achieved by designing appropriate weighting functions
wL(ϑ, ξ) andwH(ϑ, ξ) that shall be multiplied to the low and
high resolution rawdata, respectively.

To start, let us define a redundancy weightwR(ϑ, ξ). When-
ever the scan range exceeds 180◦ plus fan angle we need to

either weight the data with a short scan weight, which is also
known as the Parker weight function, or if the scan exceeds
360◦ we need to weight the data with the overscan weight
function. In case of a shifted detector design the corresponding
shifted detector weight can be applied. These redundancy
weight functions can be taken from reference [23], for ex-
ample. Since the focal spot trajectory of the low resolution
and of the high resolution scan differ, in general, we need
to use two different redundancy weight functionswRL(ϑ, ξ)
and wRH(ϑ, ξ), respectively. The redundancy weights fulfill
equation (1) as shown in reference [23].

In addition a weight functionwM(ϑ, ξ) is needed whose
support corresponds to the measured high resolution data. This
means thatwM is zero wherever the high resolution scan has
missing rays and it smoothly increases to one where measured
high resolution data are available. HencewM masks out the
truncated regions of the detector and the unmeasured angular
positions.

We now set

wH(ϑ, ξ) = wRH(ϑ, ξ)wM(ϑ, ξ)

wL(ϑ, ξ) = wRL(ϑ, ξ)
(

1 −
∑

k

wH(ϑ + kπ, (−)kξ)
)

.

Then

fH = X
−1

L pLwL + X
−1

H pHwH (4)

yields the final volume in the high resolution ROI.
To see that everything is properly normalized let us tem-

porarily abbreviatew(ϑ + kπ, (−)kξ) as w(k). Keeping in
mind thatwRL is properly normalized, because

∑

k wRL(k) =
1 by definition, we are now ready to check whetherwL + wH

is properly normalized. We find

∑

k

(

wL(k) + wH(k)
)

=

∑

k

(

wRL(k)
(

1 −
∑

l

wH(k + l)
)

+ wH(k)
)

=

∑

k

wRL(k)
(

1 −
∑

l

wH(k + l)
)

+
∑

k

wH(k) =

∑

k

wRL(k)
(

1 −
∑

l

wH(l)
)

+
∑

l

wH(l) =

∑

k

wRL(k) +
∑

l

wH(l)
(

1 −
∑

k

wRL(k)
)

= 1.

To conclude this section, let us give an example of how to
define the weight functionwM(ϑ, ξ) that is smooth and masks
out the unmeasured regions for the simple case of scanning a
cylindrical high resolution ROI of radiusRMH and centero.
Note that a ray through the center of the ROI has the lateral
coordinateξC = o · ϑ which is a function of the angleϑ, in
general.

Let s(x) have the propertiess(−x) = −s(x) ands(1) = 1.
Given that we apply the data weighting method to sampled
data it is also recommended to chooses to be smooth. We
uses(x) = sin(1

2
πx) for our numerical experiments. Now we

can define the mask function which in this case is a simple

196 The first international conference on image formation in X-ray computed tomography



(a) Simulation (b) Measurement

Fig. 2. a) The simulated test phantom is shown in a low resolution overview reconstruction, a low resolution zoom version where the FOV corresponds to the
FOV used for the high resolution reconstructions. The high resolution reconstructions (bottom row) indicate that all three methods, the data completion, the
high–pass filtering and the data weighting method achieve equivalent results. b) Reconstructions of a measured connector element showing a low resolution
overview volume rendering, and a high resolution ROI reconstruction using the data weighting method. The high resolution volume is shown as a volume
rendering and as a CT slice. Within the ROI the desired high spatial resolution is achieved.

radial transition weight function

wM(ϑ, ξ) =
1

2







































0 if ξ < ξA

1 + s
(

2
ξ − ξA

ξB − ξA

− 1
)

elseif ξ < ξB

2 else if ξ < ξD

1 − s
(

2
ξ − ξD

ξE − ξD

− 1
)

elseif ξ < ξE

0 else

that is zero in the outer region and smoothly increases to one in
the inner region of the high resolution scan. The parameters
ξA < ξB < ξC < ξD < ξE are functions ofϑ and specify
the lateral detector limits of the high resolution scan, and the
transition regions where the weight smoothly increases from
zero to one, and the center of the detector, as discussed above.
With ξC = o ·ϑ we useξA = ξC−RMH , ξB = ξC−RMH +∆R,
ξD = ξC +RMH −∆R, andξE = ξC +RMH with ∆R being the
size of the transition zone,0 < ∆R ≪ RMH .

III. E XPERIMENTS

To evaluate the three methods defined in equations (2), (3)
and (4) we conducted several simulations and measurements.
The simulations were carried out by the analytical projection
simulator RayConStruct PS (RayConStruct GmbH, Nürnberg,
Germany). The measurements were done using the Tomo-
Scope HV 500 cone–beam CT scanner (Werth Messtechnik
GmbH, Gießen, Germany). The tube voltage was 200 kV.

The geometry is a flat detector cone–beam geometry with
about 1000 projections per full rotation and a detector with
about 1000 by 1000 detector pixels of size 0.4 mm. The

distance of the focal spot to the detector surface was chosen as
2400 mm and the radii of the circle scans were set toRFL =
1200 mm andRFH = 150 mm for the low resolution overview
and the high resolution ROI scan, respectively. This results in
a radius of the field of measurement ofRML = 100 mm for
the overview scan and ofRMH = 12.5 mm for the ROI scan.
Thus, the ROI scan zooms into the object by a factor of eight.

IV. RESULTS

Figure 2a) shows various reconstructions of the simulated
test phantom. The overview image depicts all objects within
the low resolution field of measurement. A dashed circle
indicates the region of interest. There is also a zoom version
of the overview image which was produced by reconstructing
the overview datapL on the same voxel grid as will be used
for the reconstructions of the ROI data. The three images at
the bottom row of subfigure a) are the ROI reconstructions
that use the three methods data completion, data filtering and
data weighting to combinepL with pH.

The measured connector element is presented in figure
2b). The overview scanpL can be used to reconstruct the
complete object (here, a volume rendering of the connector
is shown). The ROI reconstructions (one volume rendering
and one transversal slice) instead only show a portion of the
connector with high spatial resolution within the cylindrical
ROI and low spatial resolution outside the ROI. Due to space
limitations the measurement is only shown using the data
weighting method.

Figure 3 is the scan of a chromatography column. Only
a square section centered around the ROI is shown in four
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Fig. 3. Chromatography column filled with silica gel. The figures show the
zoomed FOV of the ROI. The 50 mm inner diameter is surrounded by a 9 mm
thick glas cylinder which is surrounded by a 0.5 mm splinter shield (scatter
protection) foil. Only the ROI reconstructions show the scatter protection foil
(arrows). The ROI diameter is 25 mm.

versions: overview image, data completion method, data fil-
tering method, and data weighting method. The properties
of the filtering method are as expected because noise is
increased. Rather unexpected but quite evident is the fact that
the only ROI method that does not show ring artifacts is the
data filtering method while the completion and the weighting
methods show some ring artifacts.

V. D ISCUSSION

Whenever an overview scan is available it is relatively
simple to perform local tomography. To improve the compu-
tational performance and to reduce the memory requirements
we proposed two methods that do not need to complete the
truncated data of the high resolution scan and that do not
need to perform forward projections of an overview volume.
In fact these two methods do not even need to reconstruct
the overview volume. While our preliminary results shown
here give the impression that the data filtering method is of
equal image quality as the data weighting method a further
analysis using simulations and measurements shows that this
is not always the case. Noise and artifacts that propagate
from the low resolution reconstruction into the ROI cannot
be removed by the data filtering method. The data weighting
method, however, does not suffer from those artifacts because
only very low frequencies propagate from the low resolution
data into the high resolution scan.

Summarizing, we evaluated three highly promising ap-
proaches that are readily applicable for industrial tomography.
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Redefining Cardiac Imaging: 
The Stunning Rise of Cardiac Computed Tomography

Sheldon E. Litwin, M.D.
Amundsen Professor of Cardiology
Director of Cardiovascular Imaging

University of Utah Hospitals and Clinics

Noninvasive visualization of the coronary arteries has been a highly sought after goal for several
decades. Barriers to reaching this goal include the small caliber of the coronary vessels (< 4 mm)
and motion of the heart and thorax. These issues have been largely overcome by recent advances
in computed tomography (CT), including: electrocardiographic gating, helical acquisition, multi
row detectors and new reconstruction algorithms.  Today, a complete cardiac study can be per-
formed in < 15 seconds. Stunning images of the heart and great vessels are obtained almost
instantly. Both calcified and noncalcified atherosclerotic plaque can be detected in the coronary
arteries. The accuracy for diagnosing obstructive coronary artery disease with CT is substantially
higher than that for conventional approaches using stress testing.  Ongoing studies are addressing
the safety, economics, prognostic value and ability to affect outcomes in a variety of patient popu-
lations. I believe that in the near future, CT will become the first line imaging technique for diag-
nosing many common cardiac conditions. The future for this rapidly evolving modality is
extraordinarily bright.
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Cone beam reconstruction for the distorted circle and line trajectory

Souleymane Konate Alexander Katsevich

Department of Radiology Department of Mathematics
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Abstract
We propose an exact filtered backprojection algorithm for
inversion of the cone beam data in the case when the tra-
jectory is composed of a distorted circle and a line segment.
The length of the line scan is determined by the region of
interest, and it is independent of the size of the object. As-
suming that the distorted circle is planar and convex, we
show that we have an exact reconstruction. Numerical ex-
periments demonstrate good image quality.

1 Introduction
Image reconstruction from projections is important from the
theoretical (inverse problems) and applied (computed to-
mography (CT)) standpoints. Inversion of the cone beam
transform has always generated a great deal of interest
among scientists. For instance, early general inversion for-
mulae were proposed in Kirillov (1961), Tuy (1983), Smith
(1985), Gelfand and Goncharov (1987), Grangeat (1991).
Over the years, different types of theoretically exact cone
beam CT algorithms have been proposed. Among them
the Filtered Backprojection (FBP) algorithms are generally
considered the fastest. On the other hand, FBP algorithms
have to be developed for specific source trajectories on a
case by case basis. For instance, they are available for a
wide range of source trajectories, which include circle-and-
line, circle-and-arc, constant pitch helix, just to mention a
few. A problem of interest is the circle-and-line source tra-
jectory. This trajectory can be obtained by first moving the
patient along a line and then by rotating the C-arm. In prac-
tice, due to the heavy weight of the C-arm, the presumed
circular trajectory of the C-arm is frequently perturbed. If
not corrected, the distortions on the source trajectory lead
to noticeable artifacts in the reconstructed image. An FBP-
type algorithm was developed for the ideal circle and line
source trajectory in [2]. In this paper the number of inter-
section points between Radon planes and the source trajec-
tory was established to be at most three. The main goal of
this research is to utilize the algorithm of [2] as a build-

ing block for constructing a new inversion algorithm for a
broader class of curves. The problem is solved in the fol-
lowing manner. The first step is to consider an entire class
of curves on which a set of natural geometric restrictions is
imposed. The curves are assumed to be planar, smooth, non
self-intersecting with positive curvature. Also, the curves
have to satisfy an extra condition referred to as ‘convexity
with respect to the origin’. A given curve satisfies ‘convex-
ity with respect to the origin’ if the number of intersection
points between the curve and a line passing through its ini-
tial point is at most 2. The next step is to study the geom-
etry of the intersection points (IPs) between planes and the
source trajectory. The distribution of the IPs over different
sections of the source trajectory is also taken into consid-
eration in the analysis. The plan is to limit the number of
IPs between planes and the source trajectory to maximum
three as prescribed by the ideal circle-and-line algorithm.
Third, a set of lemmas is derived proving that the inversion
formula of [2] for the ideal circle-and-line can be applied to
our class of curves. Finally, the algorithm is implemented in
order to demonstrate good image quality. In summary, the
derived results apply not only to the ideal circle, but they are
also applicable to the entire class of curves defined earlier.
In other words, any curve or source trajectory satisfying the
prescribed conditions admits an FBP-type reconstruction.
This paper is organized in the following manner. In section
2, we give some general definitions and an overview of the
general inversion formula described in [1]. In section 3, we
present the set of lemmas that make the inversion formula
of [2] applicable to our class of curves. Finally, some nu-
merical results are presented in section 4.

2 General Definitions
Definition 1 Let Γ be a finite union of smooth curves in R3:

I :=
⋃

[al, bl]→ R3, I ∈ s→ y(s) ∈ R3, |ẏ(s)| 6= 0 on I
(1)

where
−∞ < al < bl <∞, ẏ(s) := dy/ds

1
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β(s, x) :=
x− y(s)
|x− y(s)|

, x ∈ R3 \ Γ, s ∈ I;

Π(x, ξ) := {z ∈ R3 : (z − x) · ξ = 0}.
g(y, β) is the cone beam transform of f , and β(s, x) is the
unit vector directed from the source towards the reconstruc-
tion point x.

In what follows, f is assumed to be smooth and com-
pactly supported. Additionally, f is identically zero in a
neighborhood of the trajectory.

Definition 2 Let x ∈ R3 and ξ ∈ R3 − {0}. The inter-
section points of Π(x, ξ) with Γ are denoted y(sj) where
sj = sj(ξ, ξ · x), j = 1, 2, ....
For β ∈ S2, β⊥ denotes the circle { α ∈ S2 : α · β = 0 }
consisting of unit vectors perpendicular to β. LetCrit(s, x)
be the set of all directions α is in β⊥(s, x) such that the
plane Π(x, α) is tangent to Γ or contains an endpoint of Γ.
Denote by Ireg the set of all parameters s in I , for which
the set Crit(s, x) is included (but not equal) in β⊥(s, x).
Finally, define Crit(x) to be the union over all s in I of all
Crit(s, x). We can concisely reformulate the definitions as:

Crit(s, x) :=
{
α ∈ β⊥(s, x) : Π(x, α) is tangent to Γ

or Π(x, α) contains an endpoint of Γ
}
,

Ireg :=
{
s ∈ I : Crit(s, x) ( β⊥(s, x)

}
,

Crit(x) :=
⋃
s∈I

Crit(s, x). (2)

Conditions on the trajectory For any given x in R3,
where the function f needs to be computed, the trajectory Γ
must satisfy the following main assumptions:

Property 1 (Tuy’s Completeness Condition.) Any plane
through x intersects Γ at least at one point.

Property 2 For any s ∈ Ireg(x), the number of directions
in Crit(s, x) is finite.

Property 3 For any α ∈ S2\Crit(x), the number of points
in Π(x, α) ∩ Γ is finite.

Additionally, consider a weight function n(s, x, α), s ∈
Ireg(x), α ∈ β⊥(s, x) \ Crit(s, x). The main assumptions
on the function n are the following:

Property 4 For almost all α ∈ S2,∑
j:y(sj)∈C∩Π(x,α)

n(sj , x, α) = 1. (3)

Property 5 n(s, x, α) is a piecewise constant function.

3 Inversion Formula
In this section, the main results are stated without proof.

Definition 3 Let y(s), s ∈ [0, smax] be a planar curve. The
curve C is said to be convex with respect to y(0) its initial
point, if any line passing through y(0) intersects C at most
twice.

Definition 4 C is defined as the class of non self-
intersecting smooth planar curves with positive curvature
satisfying the convexity with respect to y(0).

Theorem 1 Let C ∈ C , y(s) ∈ C, s ∈ [0, smax]. Then,
there exists a well defined smooth function R such that
y(s) = (R(s) cos(s), R(s) sin(s), 0).

The theorem states that any curves C ∈ C can be
parametrized as described above. Note the choice of R(s)
is not unique. In our case, we choose the function R in the
following manner such that we have the lemma below.

Lemma 1 R(0)−R(s) cos(s) > 0 for all s in [0, smax].

Definition 5 Let C ∈ C , and y(s) ∈ C. We define
Ω = {x|x = λy(0) + (1 − λ)y(s), s ∈ [0, smax]} to
be the set of points located on all chords from the origin
y(0) to y(s), a point on the curve, when the parameter
s ∈ [0, smax].

Definition 6 A region of interest (ROI) noted U is admissi-
ble if its projection Û on the x-y plane is contained in Ω.

Description of the trajectory The source trajectory con-
sists of a distorted circle C and a line L attached to C at
some point y(0). The curve C is relatively close to a com-
plete circle and the line L is sufficiently long. Let the fol-
lowing be respective parametrizations of the line and circle,
s ∈ I1 : s → y(s) ∈ L and s ∈ I2 : s → y(s) ∈ C.
Consider the following two parametric intervals. The first
one is I1(x) ⊂ I1 which corresponds to the section of L
between y(0) and yL(x). The second interval I2(x) corre-
sponds to the section of the circle between y(0) and yC(x).
Γ1π(x) denotes the section of C

⋃
L bounded by L1π(x).

Γ1π(x) satisfies Properties 1, 2 similarly to the ideal circle
and line case. We would like to prove that Γ1π(x) also satis-
fies Property 3, and the weight function n(s, x, α) satisfies
Properties 4 and 5. The idea is to demonstrate that the num-
ber of intersection points between Γ1π(x) and a plane Π(x)
passing through x in the ROI is at most three. If this is the
case, then the weight distribution will be analogous to the
one in the ideal circle and line problem.

The results follow if we show that the trajectory is not
too exotic.

2
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Figure 1: Description of the source trajectory

Theorem 2 The projection of the curve C on the detector
plane DP (s) is a convex curve.

PROOF: Let y(s) be a source position on the curve C,
and let (u(s), w(s)) be the projection of y(s) on DP (s0),
s0 ∈ I1. The proof follows if we show that u̇(s) < 0 and
d2w
du2 < 0. Below is a sketch of the proof. First, we show
that u̇(s) 6= 0. In order to prove that u̇(s) < 0 for all s,
it suffices to show that u̇(s) < 0 as s → 0. Second, with
some computation we can derive a formula (see below) for
d2w
du2 , and establish that d

2w
du2 < 0

d2w

du2
=
C(s)κ(s)

(
R(0)−R(s) cos(s)

)
u̇(s)

, (4)

where u̇(s) < 0, C(s) > 0, the curvature κ(s) > 0, R(0)−
R(s) cos(s) > 0, by Lemma 1. �

Definition 7 Let C ∈ C , and x be a reconstruction point
in the ROI. Consider the plane Π(x) passing through x and
the line L. The plane Π(x) intersects the distorted circle at
2 points, y(0) and yC . Then the PI–line denoted by L1π(x)
(Figure 1) is defined to be the line segment containing the
point x connecting yC(x) to the line L at some point yL(x).

Theorem 3 For every x in the ROI, L1π(x) is unique.

PROOF: Let x be a point in the ROI. Because C ∈ C , we
can always find a plane Π(x) passing through x and con-
taining the line L. According to Definition 7, Π(x) deter-
mines the L1π(x). To prove the uniqueness, let L1π(x) and
L

′

1π(x)be two different Pi-lines. Let PL be a vertical plane
containing both the line L and the reconstruction point x.
Then PL intersects the circle C at yC and y

′

C . Additionally,
the corner of the circle and line y(0) belongs to PL. Now
if we consider PC the plane of the circle, then the points
y(0) and yC belong to PC . Also recall that the plane PL
contains the points y(0), and yC and y

′

C , so y(0), yC , y
′

C

are contained in the intersection PC ∩ PL. In other words,
y(0), yC , y

′

C are not only on the curve C, but they are also
colinear. This statement violates the fact that the curve
C satisfies the convexity with respect to y(0). Therefore
L1π(x) must be unique. �

Theorem 4 Let C ∈ C , and x be a point in the ROI. Then
the following hold true:

1. There is no plane tangent toC in the interior of Γ1π(x)
and passing through L1π(x).

2. There is no plane containing x, tangent to C in the in-
terior of Γ1π(x), and passing through the corner y(0)
of the distorted circle and line.

Conclusion:The conditions that we just derived state
that the trajectory is not too exotic. In other words, we
have proven that any plane passing through a reconstruction
point x in the ROI cannot intersect the curve C at more than
3 IPs. The distortions on the circle do not violate the num-
ber of intersection points (3 IPs at most) referred to in the
ideal circle and line case [2]. Consequently, the weight dis-
tribution remains the same, and a description of the weight
function n(s, x, α) is summarized in Table 1 below.

Table 1: Definition of the Weight Function n(s, x, α)
Case Weight Function n(s, x, α)

1IP s1 ∈ I1(x) n(s1, x, α) = 1
1IP s1 ∈ I2(x) n(s1, x, α) = 1

3 IPs s1 ∈ I1(x) n(s1, x, α) = −1
s2, s3 ∈ I2(x) n(sk, x, α) = 1, k = 1, 2

We have shown that our curve satisfies Properties 1− 5,
so we can use Katsevich’s inversion formula for the ideal
circle and line case. The inversion formula is stated below.

Theorem 5 Let C ∈ C .For f ∈ C∞0 (U),

f(x) = − 1
2π2

∫
Ik(x)

2∑
k=1

δk(s, x)
|x− y(s)|

(5)

∫ 2π

0

∂

∂q
g(y(q),Θk(s, x, γ))|q=s

dγ

sin γ
ds, (6)

3
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where

Θ(s, x, γ) = cos γβ(s, x) + sin γek(s, x), (7)
ek(s, x) := β(s, x)× uk(s, x), (8)

and δk is defined as follows:

δ1(s, x) = −sgn(u1(s, x) · ẏ(s)), s ∈ I1(x); (9)
δ2(s, x) = 1, s ∈ I2(x). (10)

4 Numerical Experiments
The steps of the numerical implementation of the algorithm
on a flat detector geometry are described in [8]. We con-
ducted some numerical experiments with the clock phan-
tom which was originally described in[6]. The background
cylinder was at 0 HU, the spheres were at 1000 HU, and the
air at−1000 HU. Under the assumption that the plane of the
circle is at z = 0, the phantom is shifted by ∆z = +20.0.
The purpose of this shift is to better illustrate how well
the algorithm reconstructs cross-sections which are located
away from the plane of the circle. The size of the im-
age is 512 x 512, which corresponds to the following ROI
|x| ≤ 250 and |y| ≤ 250. In order to make small arti-
facts visible, we introduce a highly compressed grey level
window level and window width of [1.0, 0.1d], for a density
d = 1. Besides small numerical discretization artifacts, the
quality of the reconstructed cross section is good. The val-
ues of the parameter used are inmm. The radius of rotation
is 570, the height of L is 160, the detector pixel size is 0.7,
number of detector rows (551), number of columns (1001),
number of source positions on C (600), and L (160), num-
ber of filtering lines for source points (200). The variable
radius is chosen to be R(s) = R(0)− 1

2εs
2, where the dis-

tortion parameter ε = 5.0.

Conclusion We presented an exact filtered backprojection
cone beam inversion formula when the source trajectory is
composed of a distorted circle and a line. With some mild
geometric conditions on the curve, we are able to show that
Katsevich’s algorithm for the perfect circle and line trajec-
tory can be extended to our class of curves.
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BPF versus FBP: A comparison of reconstruction methods for
circular X-ray tomography with off-center detector

Dirk Schäfer, Michael Grass

Abstract— We present two new variants of back-projection filtra-
tion (BPF) algorithms for circular cone-beam X-ray tomography
with off-center detector in divergent beam geometry. The first one
applies redundancy weighting of overlapping opposite projections
before differentiation in a single projection. The second one
uses the Katsevich-type differentiation involving two neighbor-
ing projections followed by redundancy weighting and back-
projection. An averaging scheme is presented to mitigate streak
artifacts along the Hilbert filter lines in the reconstructed volume
inherent to circular BPF algorithms. The BPF-type algorithms
are compared to three filtered back-projection (FBP) algorithms
for off-center detector acquisitions investigated earlier. In a
simulation study using the Forbild head phantom, the best image
quality is obtained with the BPF algorithm based on Katsevich-
type differentiation.

I. INTRODUCTION

Circular X-ray tomography with off-center detectors saves
detector area while keeping a big field-of-view. The detector
is positioned asymmetrically in fan direction with respect
to the central ray passing through the iso-center. Typically,
the projections are heavily truncated in fan direction causing
problems for filtered back-projection (FBP) algorithms. The
source rotates on a full circle of 360° and only the overlapping
detector part measures redundant data in the central axial plane
on opposite source positions. The concept of redundancy is
extended as an approximation to higher cone-angles.
We investigated three different FBP algorithms in a previous
paper [9] using redundancy weighting before ramp filter-
ing [2], redundancy weighting after ramp filtering [1] and
redundancy weighting after Katsevich-type differentiation and
Hilbert filtering [9]. In this paper, we present to new variants
of BPF-type algorithms applied to off-center detector acquisi-
tions. The first one is based on the circular BPF algorithm with
differentiation in a single projection and redundancy weighting
for short scan acquisitions by Yu et al. [11], modified for the
off-center scenario and combined with the method of inverse
Hilbert filtering presented by You and Zeng [10]. The second
one uses the Katsevich-type differentiation to calculate the
differentiated back-projection (DBP) [5][11] and combines
it with the inverse Hilbert filtering of You and Zeng [10].
Additionally, we present a simple but effective method to
mitigate the streak artifacts along the Hilbert filter lines in
the reconstructed volume inherent to circular BPF algorithms
by averaging several reconstructions along different filter line
directions.

DS and MG are with Philips Research Europe - Hamburg, Röntgenstraße
24–26, 22335 Hamburg, Germany, dirk.schaefer@philips.com
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Fig. 1. Geometry for off-center circular X-ray tomography.

This paper shortly presents the reconstruction algorithms and
compares the resulting image quality by means of reconstruc-
tions of simulated projection data.

II. RECONSTRUCTION METHODS

A schematic view of the acquisition geometry is shown in
Fig. 1. The planar detector and the X-ray source are rotated
around the y-axis. The distance between source and detector is
given by D. The distance from the source to the rotation axis
is denoted R, and I represents the iso-center of the imaging
system. The circular orbit is parameterized by the path length
λ ∈ Λ = [0, 2πR). The projected iso-center on the detector
is located at D(λ) and defines the origin of the detector
system. The detector v-axis is parallel to the rotational axis.
Accordingly, the u-axis is parallel to the trajectory tangent
vector with umin ≤ u ≤ umax. The cone beam projection
data is denoted by X (u, v, λ):

X (u, v, λ) =

∫ ∞
0

f(S(λ) + lê(u, v, λ))dl, (1)

where ê(u, v, λ) is the unit vector from the source position
S(λ) to the detector element E(u, v, λ). The corresponding
length is denoted by SE. The flat detector is positioned in
off-center geometry. The overlap region O(λ) = {(u, v) ∈
R2 | u−o ≤ u ≤ u+o, vmin ≤ v ≤ vmax} is defined as
the symmetric region around D(λ) with measured projection
values X (u, v, λ). The width of the overlap region is ∆u =
u+o − u−o.
Following the idea first introduced by Cho et al. [1], a
redundancy weight w(u) is introduced according to:

w(u) =


0, umin ≤ u < u−o

sin2

(
π

2

u− u−o
∆u

)
, u−o ≤ u ≤ u+o

1, u+o < u ≤ umax.
(2)

Five different reconstruction methods are used in this article
and presented in the following.
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A. Pre-weighting FDK: fFBP1

Cho et al. [2] have used a simple pre-weighting of the
projection data with a redundancy weight similar to Eq. 2,
followed by standard FDK reconstruction [3]. The weighting
function mitigates artifacts that are caused by ramp filtering
across the boundary of measured data and the detector edge.
These pre-weighted projections are reconstructed according to
the modified FDK formula given in Eq. 3:

fFBP1(x) =

∫
Λ

D

|(x− S) · d̂|2

∞∫
−∞

w(u)
D

SE(x)
(3)

X (u′, v, λ) hR(u− u′) du′dλ

with: hR(ρ) =

∞∫
−∞

|P |ej2πρP dP.

d
The pre-weighting FDK is exact in the axial mid-plane, where
filtering and redundancy are correctly handled. However, at
higher cone-angles no really redundant data exist due to the
divergent geometry. Combined with the approximative FDK
reconstruction, this leads to significant artifacts especially for
asymmetric objects [9].

B. Post-weighting FDK with extended projections: fFBP2

Redundancy weighting after filtering combined with the FDK
algorithm leads to a non-exact reconstruction algorithm in
the axial mid-plane. First, the truncated projections from
off-center geometry are re-binned to a complete projection
data set using complementary rays. The fan angle α of a
specific ray u is given by α(u) = atan(u/D) and the source
angle by β = λ/R. Rewriting the projection data with these
coordinates gives X̃ (α, v, β) = X (atan(u/D), v, λ/R). The
projections are extended with the complementary rays in the
region umin ≤ u < u−o with umin = −umax:

X̃1(α, v, β) = X̃ (−α, v, β + π ± 2α) (4)
for α(umin) ≤ α ≤ α(u−o),

where the sign depends on the rotation direction. To guarantee
a smooth transition of the extended data and the originally
measured data, a faded additive offset correction is applied:

X2(u, v, λ) = (5)
X1(u, v, λ), umin ≤ u < (u−o −∆)

X1(u, v, λ) + δ cos
(
π
2
u−o−u

∆

)
, (u−o −∆) ≤ u ≤ u−o

X (u, v, λ), u−o < u ≤ umax,

where δ = X (u−o, v, λ)−X1(u−o, v, λ) defines the offset and
the fading region is chosen as ∆ = u+o − u−o.
The post-weighting FDK with extended projections as pre-
sented in Eq. 6 has been proposed by Cho et al. [1][2].

fFBP2(x) =

∫
Λ

D

|(x− S) · d̂|2
w(u)

∞∫
−∞

D

SE(x)

X2(u′, v, λ) hR(u− u′) du′dλ. (6)

C. Katsevich-type FBP with extended projections: fFBP3

The problem of incorrect handling of redundancy with the
post-weighting FDK method can be removed by using an
algorithm that correctly applies redundancy weights after the
filtering step [9]:

fFBP3(x) =
1

2π

∫
Λ

w(u)

R− (x− I) · d̂

∞∫
−∞

D

SE(x)
(7)

XKD

2 (u′, v, λ) hH(u− u′) du′ (1/R) dλ,

with hH(ρ) = −
∞∫
−∞

i sgn(P )ej2πρP dP,

and XKD

2 (u, v, λ) =

(
∂X2

∂λ
+
∂X2

∂u

∂u

∂λ
+
∂X2

∂v

∂v

∂λ

)
is the Katsevich-type derivative along the source trajectory
with fixed ray direction [4]. This derivative is computed
using the blended chain rule for arbitrary detector orientations
derived by Noo et al. [8].

D. BPF with differentiation in a single projection

Let L(t, s, m̂) be the line in direction of m̂ through s. Then,

x(t, s, m̂) = s + tm̂ (8)

is a parametrization of the points on this line, with t ∈
(−∞,∞). For those lines L intersecting the object support
Ω, there is a finite interval [tmin, tmax] corresponding to this
intersection.
A BPF algorithm with differentiation in a single projection
for circular acquisitions has been proposed by Yu et. al [11].
The differentiated back-projection (DBP) onto parallel lines
L(t, s, m̂) is expressed as:

bSD(x(t, s, m̂), λ1, λ2) = (9)

λ2∫
λ1

D2

|R− (x− I) · d̂|2
· wsig(m̂, u, λ)

× ∂

∂u

[
R

SE(x)
w(λ, u)X (u, v, λ)

]
(1/R) dλ

+
1

|x− S|
wsig(m̂, u, λ)w(λ, u)X (u, v, λ)

∣∣∣∣λ2

λ1

+
2

|x− S|
w(λ, u)X (u, v, λ)

∣∣∣∣λ(m̂2)

λ(m̂1)

,

where in the case of a full circular scan with offset detector
λ1 = 0 and λ2 = 2π, so the second term in eq. 9 cancels out.
The redundancy weight w(λ, u) = w(u) is given by the off-
center weighting function from Eq. 2. The source positions
λ (m̂1) , λ (m̂2) correspond to the intersections of the line
L(t, s, m̂) (projected in the central axial plane) and the source
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trajectory. The weight wsig accounts for the change of sign
when the back-projected ray crosses the direction m̂.

wsig(m̂, u, λ) =

 +1, if 0 ≤ acos(m̂ · ˆS(λ))
− atan(u/D(λ)) < π,

−1 else.
(10)

E. BPF with Katsevich-style differentiation

The DBP of the Katsevich-type differentiated projections XKD

onto parallel lines L(t, s, m̂) is expressed as [5][11]:

bKD(x(t, s, m̂), λ1, λ2) =

λ2∫
λ1

w(u) · wsig(m̂, u, λ)

|x− S(λ)|

XKD(u, v, λ) (1/R) dλ. (11)

F. Inverse finite Hilbert transform of DBP

The DBP for a non-truncated full scan or minimum data
schemes is equivalent to the Hilbert transform Hm̂[f(x)] of
the object function along a set of lines L(t, s, m̂) as shown in
Refs. [12][11]. Short scan or off-center detector redundancies
can also be incorporated in the BPF scheme [7][6][11].

H[f ](x(t, s, m̂)) =

∫ ∞
−∞

1

π(t− t′)
f(x(t, s, m̂))dt′

=
1

2π2
b(x(t, s, m̂), λ1, λ2). (12)

The DBP b (which can be either bKD or bSD) has to be known
along the line L(t, s, m̂) within an interval [tL2, tU2], that is
slightly larger than the support Ω of f , such that the following
condition holds [10]:

tL2 < tL1 < tmin < tmax < tU1 < tU2. (13)

Then the object f can be recovered by computing the finite
inverse Hilbert Transform H̄ [10]:

f(x(t, s, m̂)) =
1

2π
H̄[b] (14)

=
1

2π2[k(t, tL2, tU2)− k(t, tL1, tU1)]

×
∫ tU2

tL2

dt′

t′ − t
[k(t′, tL2, tU2)− k(t′, tL1, tU1)]

× b(x(t′, s, m̂), λ1, λ2)

with

k(t, tL, tU ) =

{ √
(t− tL)(tU − t), if tL < t < tU

0 else.

The reconstruction is denoted fSD and fKD when using bSD

and bKD for the DBP. Typically, the resulting reconstruction
suffers from streak artifacts along the filter line direction in
regions of sharp intensity transitions. Therefore, it is beneficial
to reconstruct the same object N -times along different filter
directions m̂i and average the results to suppress the streak
artifacts:

fN (x) =
1

N

N∑
i=1

fi(x(t, s, m̂i)). (15)

The object function is resampled at the final grid positions
using tri-linear interpolation.

III. RESULTS

Simulated projection data of the Forbild head phantom1 posi-
tioned offcenter (x = 40 mm) have been generated using 600
source positions equally sampled on 360 degree. The detector
is symmetric with respect to the projected rotation axis and has
a width of 756.6 mm and a height of 397.3 mm with 975× 512
pixels. The distance from the source to the rotation axis is
R = 881.8 mm and to the detector D = 1325.1 mm. The
influence of the number of reconstructions with filter lines
along different directions is shown for a full detector acqui-
sition in Fig. 2. In the axial slice with an offset of 26.5 mm
strong streak artifacts in the horizontal filter direction can be
observed for fSD

1 , i.e. when using only one reconstruction
with a single filter line. In the central sagittal slice the streaks
originating from the ear and the nose are visible. All these
artifacts are significantly reduced by averaging reconstructions
over 9 different filter line directions.
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Fig. 2. Reconstructions from full detector projections of shifted (x=40 mm)
Forbild head phantom with 1,3 and 9 reconstructions along different filter line
directions, Level/Window=0/100 HU,

The off-center detector acquisitions are generated by setting
all projection data with u < u−o = −15.5 mm to zero.
Reconstructions of the phantom using the three different
FBP algorithms and the two BPF algorithms are shown in
Figures 3,4,5 for the central axial, coronal and sagittal slices.
The BPF reconstructions are averaged over 9 reconstructions
with equi-angular spaced filter directions. The central axial
slice is almost identical for all methods except for fFBP2 using
the incorrect combination of ramp filtering and redundancy
weighting after filtering in divergent geometry leading to
low frequent shading artifacts. The alternating artifacts for
the FBP methods reported in Ref. [9] for different objects
can be retrieved in the central coronal and especially in the
central sagittal slice (Fig. 5). The best FBP method clearly is
fFBP3 with reduced artifacts at higher cone angles and without
shading artifacts as observed for fFBP2.

1http://www.imp.uni-erlangen.de/forbild/deutsch/results/head/head.html
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Interestingly, the BPF reconstructions fSD
9 using the off-center

detector redundancy weighting before the differentiation in
a single projection similar to FBP1 show the same type of
artifacts at higher cone angles as fFBP1. This artifact is
not present in the central sagittal slice of the full detector
reconstruction fSD

9 (see Fig. 2). The best image quality is
obtained using the BPF algorithm with Katsevich-type differ-
entiation and off-center detector redundancy weighting after
the differentiation, i.e. for fKD

9 . No alternating artifacts are
observed, neither in the central coronal nor in the sagittal
plane. Only a slightly increased low intensity drop in the
coronal plane at highest cone angles close to the calotte is
visible compared to the FBP methods.

fFBP1 fFBP2 fFBP3

fSD
9 fKD

9 phantom

Fig. 3. Central axial (y) slice: Reconstructions from off-center
detector projections of shifted (x=40 mm) Forbild head phantom,
Level/Window=0/100 HU.

fFBP1 fFBP2 fFBP3

fSD
9 fKD

9 phantom

Fig. 4. Central coronal (z) slice: Reconstructions from off-center
detector projections of shifted (x=40 mm) Forbild head phantom,
Level/Window=0/100 HU.

IV. CONCLUSIONS

Two BPF algorithms for off-center detector acquisitions have
been presented and compared to three existing FBP algorithms.
Those algorithms that apply the off-center detector redundancy

fFBP1 fFBP2 fFBP3

fSD
9 fKD

9 phantom

Fig. 5. Central sagittal (x) slice: Reconstructions from off-center
detector projections of shifted (x=40 mm) Forbild head phantom,
Level/Window=0/100 HU.

weights after the filtering show less artifacts. This holds for
FBP and BPF algorithms. The FBP algorithms using the
redundancy weights after the filtering, however, need approx-
imated (re-binned) projection data from the opposite side of
the circular trajectory for the filtering step. This drawback is
overcome using BPF methods, which apply only the short
range differentiation on the projection and the long range
Hilbert filter on the DBP volume, and hence do not use any re-
binned or approximated projection data. Surprisingly, the BPF
framework in the off-center detector setting is also sensitive
to the order of differentiation and redundancy weighting. The
best image quality is obtained using the BPF algorithm with
Katsevich-style differentiation. Averaging of several recon-
structions using different filter lines mitigates the streak artifact
problem inherent to the BPF methods.
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A Novel Implementation of Backprojected Filtration
Algorithm for Helical Cone-beam CT

Yunsong Zhao, Yining Zhu, and Peng Zhang∗

Abstract—To solve the long-object problem, helical cone-beam
scanning configuration was proposed, and several exact or
approximate reconstruction algorithms were invented. Compared
with approximate algorithms (like FDK algorithm), exact algo-
rithms are free of cone-beam artifacts. Fast implementation of
exact reconstruction algorithms are of high importance in clinical
and industrial applications. In the present paper, we propose a
new implementation of the backprojected filtration algorithm for
helical cone-beam CT. The advantages of our implementation are:
(i) it can directly reconstruct horizontal slices (z-perpendicular
slices), avoiding 3-D interpolation; (ii) it needs not to calculate
the backprojection interval for any point; (iii) it is of high degree
of parallelism and is suitable for acceleration on GPU (Graphic
Processing Unit) or other parallel systems.

Index Terms—Cone-beam tomography, helical CT, horizontal
slice reconstruction, fast implementation.

I. INTRODUCTION

Compared with fan beam scanning configuration, cone-
beam scanning configuration has many advantages, including
higher dose usage and consistency spatial resolution. Since
the 1980s, research on cone-beam CT has been drawing
researchers’ attention. Especially in recent years, with the
rapid development of panel detector technology and computer
technology, research on cone-beam CT has become an inter-
national hot topic.

Helical cone-beam scanning configuration, which could be
easily carried out in engineering, was proposed to solve the
long-object problem. From Tuy’s result [1], theoretically, the
density function of the long object can be exactly reconstructed
from projections acquired from this scanning configuration.
But it was not until 2002 that Katsevich gave the first exact
filtered backprojection (FBP) reconstruction algorithm [2],
which permits axial data truncation and has a higher efficiency
than the algorithms based on Radon transform [3], [4]. Another
type of exact reconstruction algorithm, called backprojected
filtration (BPF) algorithm, was achieved by Zou and Pan
[5] in 2004. A special feature of this algorithm is exact
reconstruction of ROI (regions of interest). Pack et al [6]
extended Zou and Pan’s BPF algorithm to general scanning
trajectories and gave a formula that revealed the relation
between the cone-beam projections and the Hilbert transform

This work was supported in part by National Science Foundation of China
under Grant 60971131/F010404. Asterisk indicates corresponding author.
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Mathematics, Capital Normal University, Beijing 100048, China. (e-mail:
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of the density function of the inspected object. Based on this
formula, density function can be reconstructed along R-line or
M-line [6], where an R-line is any line segment that connects
two points of the helix, and an M-line is any line segment that
connects the X-ray source and a cell of the panel detector. An
R-line is a so-called PI-line [7] when the two end points of
the R-line are in one helix turn. Comprehensive surveys on
cone-beam reconstruction algorithms were given in [8] and
[9].

To our knowledge, R-line(including PI-line)-based BPF
reconstruction algorithms need first backproject derivatives of
projections to a set of R-lines to obtain the Hilbert transform
of the density function along the R-lines; and then perform a
finite inverse Hilbert transform along the R-lines to reconstruct
the density function on the R-lines. In order to obtain CT
images of horizontal slices (i.e. slices vertical to the rotation
axis), a 3-D interpolation procedure is required, which not
only increases the computational cost but also affects the
accurateness of the reconstructed images. Pack et al [6]
reconstructed a set of images on M-line surfaces. But the
backprojection interval for each point to be reconstructed
needs to be determined, which leads to solving a nonlinear
equation numerically that is time-consuming.

In the present paper, we propose a novel implementation of
the BPF reconstruction algorithm for helical cone-beam CT.
Compared with existing implementations, our implementation
has the following advantages: (i) it can directly reconstruct
horizontal slices, avoiding 3-D interpolation; (ii) it needs not
to calculate the backprojection interval for any point; (iii) it is
of high degree of parallelism and is suitable for acceleration
on GPU or other parallel systems, since the reconstruction
processes for different slices are independent.

The remaining parts of this paper are organized as follows.
In section 2 we introduce the basic theory on the BPF recon-
struction algorithm for helical cone-beam CT. In section 3 we
describe our fast implementation of the BPF reconstruction
algorithm. In section 4 we verify the correctness of our
implementation using both simulated data and real data. The
efficiency of our implementation is also tested. A summary is
given in the final section.

II. BASIC THEORY

In this section we introduce the basic theory on the BPF
reconstruction algorithm for helical cone-beam CT. First we
give the mathematical descriptions and notations for helical
cone-beam scanning configuration. Then we define the Hilbert
transform of a 3-D function along a straight line and introduce
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2

(a) Helical cone-beam scanning con-
figuration.

(b) Definition of coordinate systems.

Fig. 1. Scanning configuration and definition of cooradinate systems.

its finite inverse transform. Last we derive the relation between
the cone-beam projections and the Hilbert transform of a 3-D
function, which is the foundation of the next section.

A. Scanning configuration

The helical cone-beam scanning configuration is shown
in Fig. 1(a). The cone-beam, which is composed of the X-
ray source and the panel detector, rotates around the object
and moves axially. The X-ray source emits photons and then
the detector collects the photons penetrating the inspected
object. Let the rotation axis of the cone-beam be the z axis,
we establish the object coordinate system Oxyz. The helical
trajectory of the X-ray source can be defined as:

~a(φ) = (R cosφ,R sinφ, h
φ

2π
), φ ∈ R, (1)

where R denotes the distance from the X-ray source to Oz
axis, and h indicates the helical pitch. Denote the orthogonal
projection of the X-ray source onto the detector plane as
O′. With O′ being the origin we establish the cone-beam
coordinate system O′uvw such that O′w is parallel to Oz and
O′u points to the X-ray source from O′, that is the cone-beam
coordinate system rotates with the rotation of the X-ray source
and the detector. O′u,O′v,O′w forms a right-hand system, as
shown in Fig. 1(b). Let D denote the distance from the X-ray
source to the detector.

For a given point in 3-D space, its coordinates ~x = (x, y, z)
in the object system and coordinates ~u = (u, v, w) in the cone-
beam system can be related through

~u =
(
~x− ~k(φ)

)
M(φ) (2)

and
~x = ~uM(−φ) + ~k(φ), (3)

where

M(φ) =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 , (4)

~k(φ) =
(
(R−D) cosφ, (R−D) sinφ, h

φ

2π

)
. (5)

Let f(~x) (or f ) denote the density function of the inspected
object and the support of f is denoted as Ω. Furthermore,
it is assumed that f ≥ 0 and is continuously differentiable
everywhere.

B. Hilbert transform and its inversion

The Hilbert transform of a 1-D function (say g(t)) is defined
as a convolution with the kernel 1

πt ,

Hg(t) = g(t) ∗ 1

πt
=

∫ +∞

−∞

g(t′)

π(t− t′)
dt′. (6)

The Hilbert transform of a 3-D function is an extension of that
of a 1-D function. The line passing though the point ~x0 and
parallel to ~n (a unit vector) can be represented as

L(~x0, ~n) : ~x0 + t~n, t ∈ (−∞,+∞). (7)

On the line L(~x0, ~n), a 3-D function f(~x) can be regraded
as a 1-D function f(~x0 + t~n) on t. The Hilbert transform of
f(~x) along L(~x0, ~n) is defined as the Hilbert transform of
f(~x0 + t~n) on the variable t,

Hf(t, ~x0, ~n) =

∫ +∞

−∞

1

π(t− t′)
f(~x0 + t′~n)dt′. (8)

The value of Hf(t, ~x0, ~n) at the point ~x ∈ L(~x0, ~n)
is Hf(t, ~x0, ~n)|t=(~x−~x0)·~n. As ~x is on the line L(~x0, ~n),
Hf(t, ~x0, ~n)|t=(~x−~x0)·~n is independent of ~x0. So the Hilbert
transform can be simplified as

Hf(~x, ~n) := Hf(t, ~x0, ~n)|t=(~x−~x0)·~n = Hf(t, ~x, ~n)|t=0.
(9)

Substitute (8) into (9), we have

Hf(~x, ~n) = −
∫ +∞

−∞

1

πt′
f(~x+ t′~n)dt′. (10)

Note from (10) that Hf(~x, ~n) is odd in ~n, that is

Hf(~x,−~n) = −Hf(~x, ~n). (11)

If f(~x) has a impact support, there is a finite inverse
Hilbert transform [10] which can be used to recover f(~x)
from the values of Hf(~x, ~n) in the support Ω: If there are
tmin(~x0, ~n) and tmax(~x0, ~n) (or tmin, tmax for simplicity) such
that Hf(t, ~x0, ~n) is known for t ∈ [tmin, tmax], and exists a
ε(~x0, ~n) (ε for simplicity) such that

f(~x0 + t~n) = 0, t /∈ [tmin + ε, tmax − ε], (12)

then

f(~x) =
−1√

(t− tmin)(tmax − t)

×
(∫ tmax

tmin

√
(t′ − tmin)(tmax − t′)

Hf(t′, ~x0, ~n)

π(t− t′)
dt′

+C(~x0, ~n)

)∣∣∣∣
t=(~x−~x0)·~n

,

(13)

where C(~x0, ~n) is a constant, and is the same for all points
~x0 +t~n, t ∈ [tmin +ε, tmax−ε], which can be determined from
the knowledge of f(~x0 + t~n) at some point t ∈ [tmin, tmin +
ε] ∪ [tmax − ε, tmax] [11].
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Fig. 2. PI-line and M-line: the solid line segment is a PI-line, the dashed
half-line is a M-line.

C. The relation between the cone-beam projections and the
Hilbert transform of the density function

The ray that emits from the X-ray source and projects onto
the address (v, w) can be expressed in cone-beam coordinate
system as

~u(t) = (D, 0, 0) + t
(−D, v,w)

|(−D, v,w)|
, t > 0. (14)

by (3), the ray in the object system can be expressed as

~x(t) =
(
(D, 0, 0) + t

(−D, v,w)

|(−D, v,w)|
)
M(−φ) + ~k(φ). (15)

Let p(φ, v, w) denote the cone-beam projection, then we have

p(φ, v, w) =

∫ ∞
0

f
((

(D, 0, 0) + t
(−D, v,w)

|(−D, v,w)|
)

×M(−φ) + ~k(φ)
)

dt. (16)

The relation between the cone-beam projections and the
Hilbert transform of f can be derived as

Hf(~x, ~n(φ, ~x))|φ2

φ1
=

1

π

(∫ φ2

φ1

|(−D, v∗, w∗)|2|~l|
|~x− ~a(φ)|2

d

d~l

p(φ, v, w)

|(−D, v,w)|

∣∣∣∣
v=v∗
w=w∗

dφ

+
p(φ, v∗, w∗)

|~x− ~a(φ)|

∣∣∣∣φ2

φ1

)
, (17)

where ~n(φ, ~x) is the unit vector from the X-ray source to
~x, (v∗, w∗) = (v∗(φ, ~x), w∗(φ, ~x)) is the projection address
of ~x at angle φ, d

d~l
(·) is the directional derivative along ~l =

(R, h2π ) in the detector plane. The left hand side of (17) is
the difference between the two Hilbert transforms of f(~x) at
~x along ~n(φ2, ~x) and ~n(φ1, ~x). We have

~n(φ, ~x) =
~x− ~a(φ)

|~x− ~a(φ)|
, (18)

v∗(φ, ~x) =
−Dy cosφ+Dx sinφ

x cosφ+ y sinφ−R
, (19)

w∗(φ, ~x) =
D[2πz − hφ]

2π[R− x cosφ− y sinφ]
. (20)

III. THE IMPLEMENTATION OF DIRECT HORIZONTAL SLICE
RECONSTRUCTION

In this section we derive a reconstruction formula which
can directly reconstruct horizontal slices of the inspected
object. In addition, we propose strategies for fast numerical
implementation of the reconstruction formula.

A. Reconstruction formula

Consider horizontal slice σ. As shown in Fig. 2, the intersec-
tion region of σ with the inspected object is denoted as Ωσ and
the intersection point of σ with the helix is denoted as ~a(φσ),
where φσ is the angular parameter of the intersection point.
For any given σ, the fan-beam emitted from ~a(φσ) covers
the whole Ωσ . The derivation of the horizontal reconstruction
formula is based on the following two observations: (i) The
Hilbert transform of f(~x) along the fan-beam can be calculated
from the projections; (ii) the CT image of the slice can be
obtained by the finite inverse Hilbert transform.

Now we analysis how to get the Hilbert transform of the
density function of the inspected object. It is pointed out
in [7] that there exists one and only one PI-line passing
though ~x ∈ Ωσ . Denote the intersection points of the PI-line
passing though ~x with the helix as ~a(φb(~x)) and ~a(φt(~x))
(or ~a(φb) and ~a(φt) for simplicity, but beware that φb and φt
are functions of ~x). On the PI-line ~a(φb)~a(φt), ~x is located
between the two end points, so the two vector from ~a(φb) and
~a(φt) to ~x are of opposite directions, that is

~n(φb, ~x) = −~n(φt, ~x). (21)

Noting that Hf(~x, ~n) is odd in ~n, we have

Hf(~x, ~n(φb, ~x)) = −Hf(~x, ~n(φt, ~x)). (22)

By the above formula, we have

Hf(~x, ~n(φσ, ~x))

=
1

2

(
Hf(~x, ~n(φ, ~x))|φσφb +Hf(~x, ~n(φ, ~x))|φσφt

)
.

(23)

Let φ1 = φb, φ2 = φσ and φ1 = φt, φ2 = φσ , substitute (17)
into (23), we have

Hf(~x, ~n(φσ, ~x)) =

1

2π

(∫ φσ

φb

(
|(−D, v,w)|2|~l|
|~x− ~a(φ)|2

d

d~l

p(φ, v, w)

|(−D, v,w)|

)∣∣∣∣∣
v=v∗
w=w∗

dφ

+
p(φ, v∗, w∗)

|~x− ~a(φ)|

∣∣∣∣φσ
φb

)
+

1

2π

(∫ φσ

φt

(
|(−D, v,w)|2|~l|
|~x− ~a(φ)|2

d

d~l

p(φ, v, w)

|(−D, v,w)|

)∣∣∣∣∣
v=v∗
w=w∗

dφ

+
p(φ, v∗, w∗)

|~x− ~a(φ)|

∣∣∣∣φσ
φt

)
. (24)

By the above formula we can get the Hilbert transform of
f(~x) from p(φ, v, w). As the arbitrariness of ~x and that the
fan-beam covers the whole Ωσ , we can obtain all the values
of the Hilbert transform of f(~x) along the fan-beam in Ωσ ,
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then by the finite inverse Hilbert transform we can reconstruct
the image of the slice σ.

There are some difficulties in calculating Hf(~x, ~n(φσ, ~x))
by (24) numerically: the limits of the integral φb(~x) and φt(~x)
are different for different points ~x ∈ Ωσ . So we need to
calculate φb(~x) and φt(~x) for all ~x ∈ Ωσ , which can be
done by solving non-linear equations numerically, but the
computation is large.

To obtain an efficient implementation, we rewrite (24) into a
new form. It is mainly based on the following findings: (i) The
shape of Tam-Danielsson window [7] on the detector plane, the
dashed area shown in Fig. 3, does not change with views; (ii)
For any given point ~x ∈ Ωσ , its projection addresses (v∗, w∗)
on the detector plane form a continuous curve as φ changes,
as shown in Fig. 4. (iii) (v∗, w∗) lies in the Tam-Danielsson
window iff φ ∈ [φb, φt]. (iv) w∗ > 0, if φ ∈ [φb, φσ), w∗ < 0
if φ ∈ (φσ, φt] and w∗ = 0, if φ = φσ . (v) the projection
of ~x is just on the top border of the Tam-Danielsson window
if φ = φb, and on the bottom border of the Tam-Danielsson
window if φ = φt. Define

p̄(φ, v, w) = sgn(w)χTD(v, w)
d

d~l

p(φ, v, w)

|(−D, v,w)|
(25)

and
p̃(φ, v, w) = χ

TDB
(v, w)p(φ, v, w), (26)

where sgn(w) is a sign function, χ
TD

(v, w) is the character-
istic function of Tam-Danielsson window and χ

TDB
(v, w) is

the characteristic function of the border of the Tam-Danielsson
window. Now we can rewrite (24) as

Hf(~x, ~n(φσ, ~x))

=
1

2π

∫ +∞

−∞

(
|(−D, v∗, w∗)|2|~l|p̄(φ, v∗, w∗)

|~x− ~a(φ)|2

−p(φ, v
∗, w∗)

|~x− ~a(φ)|
(δ(φ− φb) + δ(φ− φt))

)
dφ

+
p(φσ, v

∗(φσ, ~x), w∗(φσ, ~x))

π|~x− ~a(φσ)|

=
1

2π

∫ +∞

−∞

(
|(−D, v∗, w∗)|2|~l|p̄(φ, v∗, w∗)

|~x− ~a(φ)|2

− p̃(φ, v
∗, w∗)

|~x− ~a(φ)|
(δ(φ− φb) + δ(φ− φt))

)
dφ

+
p(φσ, v

∗(φσ, ~x), w∗(φσ, ~x))

π|~x− ~a(φσ)|
,

(27)

where δ(·) presents the Dirac function. Although the inte-
gral interval in (27) is (−∞,+∞), the integrand is 0, if
φ /∈ [φb(~x), φt(~x)]. Take a proper ∆ such that

φb(~x), φt(~x) ∈ [φσ −∆, φσ + ∆], ∀~x ∈ Ω, (28)

then for any ~x ∈ Ωσ , Hf(~x, ~n(φσ, ~x)) can be obtained by

Hf(~x, ~n(φσ, ~x))

=
1

2π

∫ φσ+∆

φσ−∆

(
|(−D, v∗, w∗)|2|~l|p̄(φ, v∗, w∗)

|~x− ~a(φ)|2

− p̃(φ, v
∗, w∗)

|~x− ~a(φ)|
(δ(φ− φb) + δ(φ− φt))

)
dφ

+
p(φσ, v

∗(φσ, ~x), w∗(φσ, ~x))

π|~x− ~a(φσ)|
.

(29)

Fig. 3. The Tam-Danielsson window:
the dashed area on the detector plane.

Fig. 4. Projection curve of a given
point on the detector plane.

(a) Trapezoidal sampling. (b) Polar sampling.

Fig. 5. Sampling modes.

The advantage of (29) is that the computation of the back-
projection intervals for different points is no longer needed. We
use the same backprojection interval for all ~x ∈ Ωσ , so the
parallelism of the implementation is improved significantly.
Of course, using the same backprojection interval for differ-
ent points will add some extra costs. But it is worthwhile
compared with computing the backprojection interval for each
point. With the scanning parameters given in Section IV, the
added computation for backprojection is no more than 3%.

The minimum ∆ satisfying (28) for a given FOV with radius
r can be obtained by solving the following extreme value
problem:

∆ = max
α≤φ≤2π−α

1 +
√
τ2 + (τ2 − 1) cot2(φ2 )

2
φ, (30)

where α = 2 cos−1 τ , τ = r
R . Note that different slices have

the same ∆, so we need only to calculate ∆ once.

B. Sampling and interpolation

When implementing the algorithm numerically, we need to
sample the backprojection points. As a finite inverse Hilbert
transform along the fan-beam is needed after backprojection,
we suggest two sampling modes, called trapezoidal sampling
mode and polar sampling mode respectively, as shown in Fig.
5. On the figure, the intersection point of dashed lines are
sampling points and the intersection points of solid lines are
Cartesian grids.

After reconstructing values of f(~x) on sampling points,
we can get the values of f(~x) on Cartesian grids via a 2-D
interpolation procedure. We take trapezoidal sampling mode
as an example to show this interpolation procedure. Set up
coordinate systems as shown in Fig. 5(a), then according to
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the coordinate transform from Oxy to Sξη{
ξ = R− x cosφ− y sinφ
η = −y cosφ+ x sinφ

(31)

we can get values of f(~x) on Cartesian grids by interpolation
from its values on trapezoidal grids.

C. Steps of numerical implementation

We describe the numerical implementation procedure to
reconstruct the image of slice σ as follows:

Step1. Initialization:
i) Calculate ∆ by solving (30).

ii) Initialize f(~x) := 0 for every sampling point ~x on
the slice.

Step2. Image reconstruction:
i) For every discrete point φ ∈ [φσ − ∆, φσ + ∆]

calculate p̄(φ, v, w) and p̃(φ, v, w) by (25) and
(26).

ii) For every discrete point φ ∈ [φσ−∆, φσ +∆], do

f(~x) := f(~x) + 1
2π
|(−D,v∗,w∗)|2|~l|p̄(φ,v∗,w∗)

|~x−~a(φ)|2 ∆φ

− 1
2π

p̃(φ,v∗,w∗)
|~x−~a(φ)| .

(32)
iii) Do

f(~x) := f(~x) +
p(φσ, v

∗(φσ, ~x), w∗(φσ, ~x))

π|~x− ~a(φσ)|
.

(33)
iv) Do finite inverse Hilbert transform by (13) to

get the density value of the inspected object on
sampling points, which can be speeded up by FFT.

v) Do interpolation according to (31) to get the
density value of the inspected object on Cartesian
grids.

IV. NUMERICAL EXPERIMENTS

In this section we perform numerical experiment with both
simulated data and real data to verify the validation of our
implementation. The parameters of the scanning configuration
are as follows: the distance from the X-ray source to the z
axis R = 1000 mm, the distance from the X-ray source to
detector plane D = 1230 mm, and the helical pitch h = 195
mm. The panel detector is composed of 1920× 1536 detector
cells , with each cell covering an area of 0.127× 0.127 mm2.
720 projections are collected per turn.

A. Reconstruction results from simulated data

We take 3-D Shepp-Logan phantom as an example to get
simulated data. The phantom has an ellipsoid support with half
axes of 68.0 mm, 90.7 mm and 71.9 mm along the x, y and
z axis, respectively. Projections are computed using analytical
formula for line integrals through all objects composing the
phantom. Fig. 6 illustrates the reconstructed images of slice
z = 24.375 mm and the size of the images is 1024× 1024.

(a) Phantom. (b) Reconstructed image be-
fore interpolation.

(c) Reconstructed image after
interpolation.

(d) Profile of the 512 column
of (a) and (c).

Fig. 6. Reconstructed images at z = 24.375 mm. Gray scale: [0, 1].

Fig. 7. 3-D image of the calabash and its partial cutaway view.

B. Reconstruction results from real data

The real data are acquired from the CT devices that are
developed by our laboratory. The inspected object is a calabash
whose height is 255 mm. The height of the detector is 195.072
mm, so the cone-beam can not cover the whole calabash. With
the above parameters, the scan with two turns is enough to
collect projections needed to reconstruct the whole calabash.
The reconstructed 3-D image of the calabash is shown in Fig.
7. From the 3-D image and its partial cutaway view, we can
clearly see the fungus spots on the surface of the calabash and
the distribution of the seeds.

C. Efficiency test

The proposed implementation is of high degree of paral-
lelism. We have tested our implementation using two Quadro
FX5800 graphics cards (NVIDIA, Sanata Clara, CA) with
4GB video memory each. CUDA (2.3) is used to program the
GPUs. The CPU host codes were compiled with Microsoft
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TABLE I
TEST RESULTS FOR EACH STEP OF THE IMPLEMENTATION.

Operations Time (sec)
Load projections to main memory 68.75
Transfer projections to graphic memory 6.66
Compute p̄(φ, v, w) and p̃(φ, v, w) 6.32
Backprojection 189.82
Inverse Hilbert transform and interpolation 61.75
Transfer reconstructed image to main memory 3.10
Save image to hard disk 119.77
Total time 468.43 (7.8 min)

Visual Studio 9.0 running on a Dell Precision T7500 with two
Intel Xeon X5570 running at 2.93 GHz and 24 GB of RAM.
The tested data consists of 1440 projections, each of which
is of size 1920×1536; the size of the reconstructed image is
10243. 32 bits float are used during the computation. TABLE
I gives the test results.

V. SUMMARY

In this paper we have proposed a fast implementation of
the BPF reconstruction algorithm for helical cone-beam CT,
which can directly reconstruct the images of the horizontal
slices of the inspected object. Our implementation is of high
degree of parallelism and is suitable for acceleration on
GPU and other parallel systems. Numerical results from both
simulated data and real data have verified the correctness of
our implementation and the reconstruction speed on GPU is
satisfactory.
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3D Forward and Back-Projection for X-Ray CT
Using Separable Footprints with Trapezoid

Functions
Yong Long and Jeffrey A. Fessler

Abstract—The greatest impediment to practical adoption of
iterative methods for X-ray CT is the computation burden of
cone-beam forward and back-projectors. Moreover, forward and
back-projector accuracy is also crucial to iterative reconstruction
methods. We previously described a computationally efficient
projector that approximates the voxel footprint functions by the
2D separable products of trapezoid functions in the transaxial
plane and rectangular functions in the axial direction [1], [2].
The separability of these footprint functions simplifies calculating
their integrals over rectangular detector cells. We showed that
this separable footprint (SF-TR) method was more accurate
than the distance-driven (DD) method but with comparable
computation time. This paper describes a new extension of
that projector, called the SF-TT projector, that uses trapezoid
functions in both directions. We show that using a trapezoid
along the axial direction improves projector accuracy for voxels
associated with larger cone angles. However, this improved
accuracy requires increased computation compared to the rect-
angular approximation. Having both options available facilitates
evaluation of the trade offs between accuracy and computation
for different cone-beam geometries.

Index Terms—Cone-beam tomography, iterative tomographic
image reconstruction, forward and back-projection, separable
footprint

I. I NTRODUCTION

Iterative statistical methods for 3D tomographic image re-
construction offer the potential for improved image quality
and reduced X-ray dose, compared to conventional filtered
back-projection (FBP) methods. The primary computational
bottleneck in iterative reconstruction methods is forward and
back-projection operations. The forward projection is roughly
a discretized evaluation of the Radon transform, and the back-
projector is its adjoint. Mathematically, an accurate forward
projector must compute the convolution of the footprint of
an image basis function with some detector blur model, such
as a 2D rectangular function that represents the finite size of
detector cells.

Numerous 3D forward and back-projection methods have
been proposed [1]–[8]. Each method compromises between
computational complexity and accuracy. Spherically symmet-
ric basis functions (blobs) [5], [6] have radially symmetric
footprints that conveniently are independent of the viewing
angle, except for a magnification factor. However, when high
accuracy is desired, blob footprints intersect many more de-
tector cells than voxel footprints, increasing computation.

This work was supported in part by NIH grant P01-CA59827.
Y. Long and J. Fessler are with Dept. of Electrical Engineering and

Computer Science, University of Michigan, Ann Arbor, MI 48109.

The distance-driven (DD) method [4] maps the horizontal
and vertical boundaries of the image voxels and detector cells
onto a common plane such asxz or yz plane, approximating
their shapes by rectangles. It calculates the lengths of overlap
along the transaxial direction and along the axial direction, and
then multiplies them to get the area of overlap. The DD method
has the largest errors when the X-ray source’s azimuthal angle
is near odd multiples ofπ/4, where the transaxial footprint is
approximately triangular rather than rectangular.

We proposed previously a separable footprint (SF-TR) pro-
jector [1] that approximates the voxel footprint functions as
2D separable functions with trapezoid and rectangle func-
tions in the transaxial and axial directions respectively. The
separability of these footprint functions greatly simplifies the
calculation of their integrals over detector cells leading to
an efficient implementation. The SF-TR method has similar
computation speed as the DD projector, but is more accurate,
reducing particularly the errors around odd multiples ofπ/4.
The rectangle approximation in the axial direction is reason-
able for smaller CT cone angles such as multi-slice detector
geometries. However, for CT systems with larger cone angles
(> 10◦), such as flat-panel detector geometries, the rectangle
approximation becomes less accurate.

This paper describes a new separable footprint method
for forward and back-projection called the SF-TT method. It
approximates the voxel footprint functions using 2D separable
functions with trapezoid functions inboth the transaxial and
axial directions. We show that the SF-TT projector is more
accurate than the SF-TR projector, but requires more compu-
tation. To balance computation and accuracy, one may use the
SF-TR projector for voxels associated with small cone angles
(i.e., near the plane of the X-ray source) where the rectangle
approximation is adequate, and use the new SF-TT projector
for voxels associated with larger cone angles.

The organization of this paper is as follows. Section 2
describes the cone-beam 3D system model, and introduces the
SF-TT projector. Section 3 gives simulation results, including
accuracy and speed comparison between the SF-TT and SF-
TR projector as stand alone modules and within iterative image
reconstruction. Finally, conclusions are in Section 5.

II. M ETHOD

A. Cone-Beam 3D System Model

For iterative image reconstruction, we forward project a
discretized approximation of the continuous-space objectf(~x)
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represented by a common basis functionβ0(~x) superimposed
on aN1 ×N2 ×N3 Cartesian grid as follows:

f(~x) =
∑

~n

f [~n] β0

(

(~x − ~c[~n]) ⊘ ~∆
)

, (1)

where the sum is over theN1×N2×N3 lattice that is estimated
and~c[~n] = (c1[~n], c2[~n], c3[~n]) denotes the center of the~nth
basis function and~n = (n1, n2, n3) ∈ Z

3. The grid spacing
is ~∆ = (∆1,∆2,∆3), and⊘ denotes element-wise division.
We consider the case∆1 = ±∆2 hereafter, but we allow
∆1 6= ∆3, because voxels are often not cubic.

Axial cone-beam projection space is characterized by three
independent indices(s, t, β) and two distance parameters
(Dsd, Ds0), whereβ denotes the angle of the source point
counter-clockwise from they axis, (s, t) denote the local
coordinates on the 2D detector plane where thes-axis is
perpendicular to thez-axis and thet-axis is parallel to the
z-axis Dsd denotes the source to detector distance andDs0

denotes the source to rotation center distance.
The cone-beam projections off(~x) are given by

p(s, t;β) =

∫

L(s,t,β)

f(x, y, z) dℓ, (2)

where

L(s, t, β) =

{

~p0 + α~e3 : α ∈

[

0,
√

D2

sd
+ s2 + t2

]}

,

and ~e3 denotes the direction vector of a ray from the source
position~p0 to a point~p1 on the detector plane.

Assume that the detector blurh(s, t) is shift invariant,
independent ofβ, and acts only along thes andt coordinates.
Then the mean projections satisfy

ȳβ[sk, tl] =

∫∫

h(sk − s, tl − t) p(s, t;β) ds dt, (3)

where(sk, tl) denotes the center of detector cell specified by
indices(k, l) for k = 0, . . . , Ns − 1 and l = 0, . . . , Nt − 1.

Substituting the basis expansion model (1) for the object
into (3) and using (2) leads to the linear model

ȳβ[sk, tl] =
∑

~n

aβ [sk, tl;~n] f [~n], (4)

where the elements of cone-beam system matrixA are sam-
ples of the following cone-beam projection of a single basis
function centered at~c[~n]:

aβ [sk, tl;~n] = F (sk, tl;β;~n), (5)

where the “blurred footprint” function is

F (s, t;β;~n) ,

∫∫

h(s− s′, t− t′) q(s′, t′;β;~n) ds′ dt′,

and q(s, t;β;~n) denotes the cone-beam footprint of basis

function β0

(

(~x − ~c[~n]) ⊘ ~∆
)

, i.e.,

q(s, t;β;~n) =

∫

L(s,t,β)

β0

(

(~x − ~c[~n]) ⊘ ~∆
)

dℓ . (6)

The goal of forward projectors is to compute (4) rapidly but
accurately.

A simple model for the detector blur is

h(s, t) =
1

rsrt
rect

(

s

rs

)

rect

(

t

rt

)

, (7)

wherers andrt denote the width alongs and t respectively.
This model accounts for the finite size of the detector ele-
ments.

B. Separable Footprint Projector with Trapezoid Functions
(SF-TT)

The footprints of voxel basis functions can be computed
analytically for cone-beam geometries [9, p. 104]. Fig. 1 shows
an example of a true footprint and its profiles. This 2D function
is approximately separable except for small areas at the upper
left and lower right corner.
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Fig. 1. The exact footprint functionq(s, t; β;~n) and its profiles of a voxel
with ∆1 = ∆2 = ∆3 = 1mm centered at(93, 93, 93)mm under a flat-
detector cone-beam geometry withDsd = 949mm andDs0 = 541mm when
β = 0◦. The azimuthal and polar angle of the ray connecting the source and
the voxel center are11.7◦ and11.5◦ respectively.

Inspired by the shape of the true footprint, we approximate
voxel footprints as 2D separable functions with trapezoid
functions inboth the transaxial and axial direction as follows,

q(s, t;β;~n) ≈ △Xl(β;~n) trap(s; τ0, τ1, τ2, τ3)

· trap(t; ξ0, ξ1, ξ2, ξ3) , (8)

where

l(β;~n) ,
1

| cos(θ0) | · max{| cos(ϕ0) |, | sin(ϕ0) |}
,

trap(a; b0, b1, b2, b3) ,















a−b0
b1−b0

, b0 < a < b1
1, b1 ≤ a ≤ b2
b3−a
b3−b2

, b2 < a < b3
0, otherwise,

(9)

where θ0 and ϕ0 denote the polar and azimuthal angles of
the ray connecting the source and center of the~nth voxel
respectively,τ0, τ1, τ2 andτ3 denote vertices of the trapezoid
function which are at the exact locations as those of the true
footprint function in thes direction, andξ0, ξ1, ξ2 and ξ3
denote vertices of the trapezoid function in thet direction
which are the projectedt coordinates of four axial boundaries
of the voxel.

Using the projections of boundaries of the voxel basis func-
tion as the boundaries of the approximate separable footprints
ensures the depth-dependent magnification of the cone-beam
geometry is modeled accurately. It also allows the approxi-
mated separable footprints to adapt their shapes according to
relative positions of the source, detector and voxels, as true
footprints do. For example, for a voxel centered at the origin,
its axial footprint is approximately a rectangular function as
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shown in [1, Fig. 1], instead of a trapezoid function. For
this voxel trap(t; ξ0, ξ1, ξ2, ξ3) is almost a rectangle because
ξ0 ≈ ξ1 andξ2 ≈ ξ3 becauseξ0, ξ1, ξ2 andξ3 are the projected
t coordinates of four axial boundaries of the voxel.

To accelerate the computation of the SF-TT projector, we
adopt the acceleration method used by the SF-TR projector
[1]. We initially ignore l(β;~n) by settingl(β;~n) = 1 for all
the voxels at any projection view, and then scale the “blurred
footprint” functions by multiplying them by a ray-dependent
scale factor.

III. RESULT

A. Forward and Back-Projector as Single Modules

We simulated an axial cone-beam flat-detector X-ray CT
system with a detector size ofNs × Nt = 512 × 512 cells
spaced by∆S = ∆T = 1mm with Nβ = 984 angles over
360◦. The source to detector distanceDsd is 949mm, and the
source to rotation center distanceDs0 is 541mm. We included
a rectangular detector response (7) withrs = ∆S andrt = ∆T.

We implemented the SF-TR and SF-TT projector in ANSI
C using single precision. The DD projector was provided by
De Manet al., also implemented in ANSI C.

1) Maximum Errors of Forward Projectors: We define the
maximum error as

e(β;~n) = max
s,t∈R

|F (s, t;β;~n) − Fap(s, t;β;~n)| , (10)

whereFap(s, t;β;~n) is any of the approximate blurred foot-
prints by the SF-TR, SF-TT and DD methods. We generated
the true footprintF (s, t;β;~n) in (5) by linearly averaging
1000 × 1000 analytical line integrals of rays sampled over
each detector cell.

We compared the maximum errors of the forward SF-TR,
SF-TT and DD projectors for a voxel with△X = △Y =
△Z = 1 mm centered at(0, 0,−100) mm. Since the voxel is
centered at the origins ofx andy axes, we chooseNβ = 180
angles over only90◦ rotation. Fig. 2 shows the results on a
logarithmic scale. The maximum errors of the SF-TT projector
are smaller than those of the SF-TR and DD projector,e.g.,
the maximum errors of the DD and SF-TR projector are about
18 and3 times larger than that of the SF-TT projector when
β = 45◦. We also compared the maximum errors for a voxel
centered at(100, 150,−100) mm. We chooseNβ = 720
angles over360◦ rotation due to the offsets of this voxel in
thex andy direction. Fig. 3 shows the results. The maximum
errors over360◦ rotation of the DD and SF-TR projector are
about13 and3 times of that of the SF-TT projector.

2) Speed of Forward and Back-projectors: We compared
the computation times of the SF-TR, SF-TT and DD projectors
using an image whose size isN1 = 512, N2 = 512, N3 = 128
and spacing is∆1 = ∆2 = ∆3 = 0.5 mm. We evaluated
the elapsed time using the average of 5 projector runs on a
8-core Sun Fire X2270 server with 2.66 GHz Xeon X5500
processors. Because of the “hyperthreading” of these Nehalem
cores, we used 16 POSIX threads to parallelize the projection
operation across views. (We found that using 16 threads
reduced computation time by only about 10% compared to
using 8 threads.)
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Fig. 2. Maximum error comparison between the forward DD, SF-TR and
SF-TT projector for a voxel centered at(0, 0,−100)mm.
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Fig. 3. Maximum error comparison between the forward DD, SF-TR and
SF-TT projector for a voxel centered at(100, 150,−100)mm.

Table I summarizes computation times. The computation
times of the SF-TR and DD projector are about the same,
whereas the SF-TT projector is about2 times slower. Of course
execution times depend on code implementation.

B. Forward and Back-projectors within Iterative Reconstruc-
tion

We also compare the SF-TT projector and the SF-TR
projector within an iterative reconstruction method. (We al-
ready showed the SF-TR method provides less artifacts in the
reconstructed images than the DD method in [1]).

We simulated a X-ray axial cone-beam CT system with
a flat-panel detector of512 detector channels for512 slices

Projectors SF-TT SF-TR DD
Forward time (seconds) 91 35 46

Backward time (seconds) 92 44 49

TABLE I
SPEED COMPARISON OF THESF-TT, SF-TRAND DD FORWARD AND

BACK PROJECTORS.
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(Ns = 512, Nt = 512) by Nβ = 984 views over360◦. The
size of each detector cell is∆S×∆T = 1×1 mm2. The source
to detector distance isDsd = 949.075 mm, and the source to
rotation center distance isDs0 = 541 mm. A quarter detector
offset in thes direction is included to reduce aliasing.

We modified the 3D Shepp-Logan digital phantom to in-
clude several ellipsoids centered at thez = 112.5 plane
because the trapezoid approximation of the SF-TT method
is more realistic than the rectangle approximation of the SF-
TR method especially for voxels far away from the origin.
The field of view (FOV) is250 × 250 × 250 mm3, implying
256×256×256 voxels with a resolution of0.9766×0.9766×
0.9766 mm3. We simulated noiseless cone-beam projection
measurements from the Shepp-Logan phantom by linearly
averaging8 × 8 analytical rays [9, p. 104] sampled across
each detector cell. To focus on the projector accuracy, we used
noiseless projection data.

We implemented iterative image reconstruction with these
two projector/backprojector methods. We ran50 iterations of
the ordered subsets method with82 subsets [10], initialized
with reconstruction by the FDK method [11], for the following
penalized weighted least-squares cost function with an edge-
preserving “hyperbola” penalty function (PWLS-OS):

Φ(x) =
∑

i

wi

1

2
(yi − [Ax]i)

2 + βR(x) (11)

R(x) =
∑

k

ψ([Cx]k), (12)

where yi is the negativelog of the measured cone-beam
projection,wi values are statistical weighting factors,A is
the system matrix,C is a finite differencing matrix andψ(t)
is the potential function. Here we used the hyperbola:

ψ(t) =
δ2

3

(
√

1 + 3 (t/δ)2 − 1

)

. (13)

For this simulation, we usedwi = exp(−[Ax]i), β = 2 and
δ = 5 Hounsfield units (HU).

For this iterative reconstruction experiment, we did not see
obvious visual differences between reconstructions by the SF-
TT and SF-TR method, and the normalized root-mean-square
(NRMS) errors were similar. It appeared that the axial cone-
beam artifacts due to poor sampling (not truncation) at the off-
axis slices dominated other effects in the reconstructed images,
such as the errors caused by rectangle approximation. Further
research will evaluate these two projectors within iterative
reconstruction methods under other CT geometries where the
off-axis sampling is better, such as helical scans, yet where
the cone angle is large enough to differentiate the SF-TT and
SF-TR method .

IV. CONCLUSION

We have presented a 3D forward and back projector, named
the SF-TT projector for X-ray CT. Our results have shown
that the SF-TT projector is more accurate but computationally
slower than the SF-TR projector. We demonstrated previously
that the SF-TR projector is more accurate than the well-known
DD projector but with similar computation speed in [1].

The SF-TT projector uses trapezoid functions in both the
transaxial and axial directions. Using trapezoid functions in
the axial direction involves more computation compared with
using simple rectangular functions, such as projecting four
axial boundaries of each voxel instead of two and evaluating
the weight (contribution of a voxel to a detector cell) in two
additional triangle areas of each trapezoid function. Thus it is
reasonable that the computation time of the SF-TT projector
was about2 times that of the SF-TR projector. To save
computation and maintain relative accuracy, one may use the
original SF-TR projector for voxels that are near the X-ray
source plane, where the cone angles are small and the rectangle
approximation is reasonable, and use the SF-TT projector for
other voxels.
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I. INTRODUCTION 

Iterative reconstruction of tomographic problems is a 

demanding computation task. According to the system 

geometry, the size of the data, or the interpolation model, the 

requirements in terms of computation power and memory are 

not the same. With C-arm based X-ray rotational 

angiography, the data is generally truncated, angular 

sampling is limited by the detector read-out rate, and the 

circular trajectory induces so-called cone-beam artifacts. 

Regions-of-interest are reconstructed using data 

extrapolation and analytical reconstruction. Iterative least-

square technique may be considered as an alternative to data 

extrapolation as well as for correcting for the cone-beam 

artifacts. This implies a significant increase in computation. 

It is common to trade memory versus computation. For 

instance, the use of look-up tables where pre-calculated 

values are stored [1], or the use of over-sampling with 

nearest neighbor to replace linear interpolation [2], reduce 

computation while increasing memory needs. Here, we look 

at the opposite direction, where we decrease memory needs, 

even if it increases computation. If we consider the 

Landweber iteration [3-4], it has a slow convergence. The 

conjugate gradient has a much faster convergence [5], but 

requires several volumes to be kept in memory at once. In 

addition, the full volume must be considered in an iterative 

reconstruction process, not just the region-of-interest. In [6], 

it is noted that the Landweber iteration can be expressed in a 

way such that the iterates are views rather than volumes. This 

allowed for approximating the iterative algorithm by a 

filtering step, thus removing the computational burden.  

In the present work, we further explore this change of 

perspective and provide expressions for the conjugate 

gradient and the SART [7] algorithms, where the iterates are 

views rather than volumes. In the common case of under-

determined problem, where the volume size is significantly 

larger than the data size, a view-based scheme requires 

proportionally less memory for about the same amount of 

computation. However, it allows for reconstructing arbitrary 

large volumes since volumes are never stored entirely. This 

approach suits specialized hardware such as GPU, where the 

computation power is much higher than CPU-based system, 

while memory is comparatively scarce. 

II. THEORY 

A. Image-based Landweber iteration 

We consider the resolution of a linear system sRf =  

through the use of the application A defined as: 

[ ] ( ) sRfRRIfA
tt ρρ +−=  (1) 

If we set 1 s.t. <− RRI
tρρ , application A is a contraction, 

we have: 

[ ] 2*)0( minlim sRfffA
f

n

n
−==

∞→
 (2) 

The repeated use of the contraction defines an algorithm that 

converges towards the least square approximation of the 

solution of the system. In the context of tomography, this 

algorithm can be referred to as the Landweber iteration [3]. It 

computes image f from the view data s. 

B. View-based Landweber iteration 

We replace the image-based application A with the view-

based application V defined for p, vector of the space of 

views as: 

[ ] ( ) spRRIpV t ρρ +−=  (3) 

We note that if pRf
t= : 

[ ]( ) ( )
( ) [ ]fAsRfRRI

sRpRRIRpVR

tt

tttt

=+−=

+−=

ρρ

ρρ
 (4) 

Therefore, by simple recurrence, if )0()0(
pRf

t=  both the 

image-domain and the view-domain schemes will produce 

the same iterates )()( ntn
pRf = . 

This approach has been used in [6] to approximate the 

iterative reconstruction by a filtering step: the full iterative 

computation is performed on basis objects from which a 

filter is designed such that approximate reconstruction of any 

object is obtained from this filtering. Here we look at an 

exact computation for any object. Both schemes are 

equivalent because they compute products pRf
t=  (i.e. 

backprojection) and Rfp =  (i.e. reprojection) in the same 

order. Implementation of the view-domain algorithm relies 

on the computation of pRR
t . If it is implemented as the 

computation of pR
t , which is the back-projection of all 

views into one volume, followed by the computation of 

( )pRR
t , which is the reprojection of the volume resulting 

from the backprojection, there is neither difference nor gain 

to expect from the view-domain approach. Gain is expected 

if one considers the product matrix t
RR  and applies it in the 

view domain as ( )pRR
t . 

For so doing, we denote 
ijij

rR =)(  the coefficient of matrix R 

that relates image pixel j to view measurement i.  The 

coefficient that relates measurement j to measurement j' 

through t
RR  is: 

∑ ′′ =
i

ijjijj

t
rrRR )(  (5) 

220 The first international conference on image formation in X-ray computed tomography



which is the sum over all pixels of the combined interactions 

between pixel i and measurements j and j'. Memory 

requirements are now independent of the sampling in i, 

while, on the contrary, computation is proportional to i. 

The final volume after N iterations is obtained computing: 
)()( NtN

sRf = . This step may be delayed to visualization 

time, when only part of the volume is under study, or concern 

the region-of-interest only, so that no volume is entirely 

stored at any time. 

C. View-based conjugate-gradient: 

The contraction-based algorithm provides a solution to a 

quadratic optimization problem that can be reached in fewer 

iterations using the conjugate gradient algorithm. We verify 

here that its implementation can be set indifferently in the 

view or the image domain.  

The image-based algorithm may be implemented as follows: 
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which requires the storage in memory of 4 images at once: 
)()()()( ,,, ntnnn

RdRdrf . 

The view-based implementation has intermediate steps that 

are kept in sets of views rather than images, using the 

following change in variables: 
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We obtain 
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and 
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which, given )()()()()()( ,, ntnntnntn tRdqRrpRf ===  and 

the computation of  )()(  , ntnt qRRtRR , leads to 
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We have 
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Therefore, by recurrence, both schemes are mathematically 

equivalent. It is therefore possible to replace the 4 

intermediate vectors )()()()( ,,, ntnnn
RdRdrf  in the image space 

with 5 intermediate vectors in the view space: 
)()()()()( ,,,, ntntnnn

tRRqRRrqs . No extra-computation is added 

inside the loop, but an extra vector is required for storage. 

D. View-based SART: 

In the block-iterative approach, application A is replaced by 

a series of application 
Θ

A  derived from the partition of 

matrix R and vector s into blocks of rows 
Θ

R  and sub-vector 

Θ
s .  Θ  therefore denotes a set of row indices, and 

application 
Θ

A  is such that 

[ ] ( )
ΘΘΘΘΘ

+−= sRfRRIfA tt ρρ  (12) 

Each block of the partition is applied successively so that all 

measurements are used once per iteration, leading to the 

product application: 

[ ] [ ]fAfA 







= ∏

Θ

ΘΠ
 (13) 

Convergence of the series [ ] Π

Π
∞→

= ffA
n

n

)0(
lim  has been 

proven in [8]. For tomography, a few iterations give 

satisfactory results. 

We now denote p a vector in the space of views. 

We denote Φ  the set of indices that complement Θ . We can 

write: 
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R ,  (14) 

We note that 
ΦΦΘΘ

+= sRsRsR ttt  and that 
ΘΘΘ

= sRsR tt  and 

ΦΦΦ
= sRsR tt . 
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We now replace the image-based application 
Θ

A  with the 

view-based application:  

[ ]
( )








 +−
=

Φ

ΘΘ

Θ
p

spRRI
pV

t ρρ
 (15) 

that modifies only the part of the measurements indexed by 

Θ . 

We now show that if 
ΦΦΘΘ

+== pRpRpRf ttt , we have 

[ ]( ) ( )( )

[ ]fAsRfRRf

sRpRRRpRpR

pRspRRIRpVR

tt

ttttt

tttt

ΘΘΘΘΘ

ΘΘΘΘΦΦΘ

ΦΦΘΘΘ

=+−=

+−+=

++−=

ρρ

ρρ

ρρ

 

 (16) 

Therefore, by simple recurrence, if )0()0(
pRf

t=  both the 

image-domain and the view-domain schemes will produce 

the same iterates )()( ntn
pRf = . 

III. EXPERIMENTS 

As an illustration, a simple simulation of a parallel geometry 

was performed. A 256
2
 image of a skull phantom was 

obtained with pixel values scaled to shifted Hounsfied Unit 

(HU), i.e. with 0 for air, 1000 for water, leading to a 

maximum bone value of 2477. This image was projected 

using parallel-beam geometry with 128 projection angles and 

256 detector bins. The size of the data was therefore 50% of 

the size of the image to be reconstructed. This data set was 

reconstructed with the Landweber algorithm. The image-

based algorithm is denoted ibL, the view-based version vbL. 

Fifty iterations were computed using 310.9 −=ρ  for both 

versions (a value of 210.1 −=ρ  did not provide converge). 

The same data set was reconstructed with the conjugate 

gradient algorithm. We denote ibCG the image-based 

version, and vbCG the view-based version. Twenty iterations 

were performed for each version. Image-based results were 

compared to view-based images by subtraction of the 

generated images. 

IV. RESULTS 

Fig.1 shows the images obtained with the image-based (left) 

and view-based (middle) algorithms. The top row shows the 

results obtained with ibL (top left) and vbL (top center), the 

bottom row the reconstruction of the same data set with ibCG 

(bottom left) and vbCG (bottom center). The right column 

shows the difference between image-based and view based 

implementations (top ibL – vbL, bottom ibCG – ivCG). All 

images are scaled to their own maximum. For the Landweber 

iteration, the greatest error in the difference image ibL – vbL 

was -0.023HU. For the conjugate gradient, after 20 

iterations, the error was up to 10HU. The pattern of the 

difference image shows that these high error values were 

located at edges. The qualitative appearance of the 

reconstructed image does not demonstrate difference of 

resolution. Indeed, fig. 2 shows a profile taken at the centre 

row of the conjugate gradient reconstructed images: errors 

are hardly noticeable. Similar results were obtained with 

image-based and view-based SART (not shown). 

V. DISCUSSION 

View-based implementations of least-square algorithms have 

been proposed as a mean for reducing the memory 

requirements when computing tomographic reconstruction 

from limited data sets. From a practical perspective, 

application to rotational angiography is of interest. Typically, 

512
3
 volumes are reconstructed from 150 truncated views on 

a circular orbit. Potential improvements are expected from 

using iterative reconstruction in order to better handle 

truncation by avoiding the need for data extrapolation, as 

well as a better handling of cone-beam artifacts due to the 

incomplete circular orbit. Such a task would benefit from the 

use of powerful graphic cards, but the need for storing four 

volumes of 512
3
 32-bit floating values would pre-empt 2 Gb 

of memory. The proposed scheme with 150 views would 

“only” require 750 Mb. Furthermore, if the volume is a 

region-of-interest, bigger volume and associated memory are 

required, while the view-based scheme requirements remain 

constant. Although the provided numerical simulation only 

cover parallel beam noise-free data, we see no reason why 

the algorithm should not provide equivalent solution 

(whatever they are) when applied to cone-beam acquisition 

from a real system. 

On a more theoretical point of view, view-based 

implementations allow for reconstructing volumes with 

arbitrary small voxels, and thus explore the cost associated 

with the limited sampling of the volume. 

VI. CONCLUSION 

Extensions of the view-based expression for the Landweber 

iteration have been proposed for the conjugate-gradient and 

the SART algorithm. They are equivalent to their image-

based counterparts, but in the case under-determined 

problems, they allow for storing intermediate results in the 

view domain, therefore using less memory storage. This can 

lead to significant memory savings when considering 

iterative reconstruction of under-sampled tomographic 

problems. 
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Fig 1: Top row: Landweber, 50 iterations. Bottom row: conjugate gradient, 20 iterations. Left column: image-

based implementation. Center column: view-based implementation. Right column: difference image between 

image-based and view-based implementation. All images are scaled to their own maximum. 
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Fig. 2: Profile through the center row of the image-based conjugate gradient (line) and the view-

based conjugate gradient (symbols).  
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Comparison of Sinogram- and Image-Domain
Penalized-Likelihood Reconstruction for CT

Phillip A. Vargas* and Patrick J. La Rivière

I. I NTRODUCTION

Iterative reconstruction methods can provide superior spatial
image resolution and noise properties relative to analytic ap-
proaches. This is achieved by correcting for geometric effects of
the imaging system, engineering artifacts and photon counting
statistics. These effects cannot be readily modeled in linear
analytic reconstruction algorithms such as filtered back projection
(FBP). The main disadvantage of these iterative methods is that
they can be computationally intensive since they involve extensive
back- and forward-projections. To mitigate this burden, our group
has worked on striking a balance between fully iterative image
reconstruction and naive FBP. The method we have chosen to
accomplish this reconstructs a smoothed and restored sinogram
with conventional FBP. In this method the sinogram is smoothed
by maximizing a penalized-likelihood objective function that can
incorporate many (though not all) of the effects included in fully
iterative image-domain reconstruction. By only iterating a few
times we reduce a great deal of computation cost. This cost is
further lowered by performing these calculations in the sinogram
space where we avoid having to perform the back- and forward-
projections.

In a previous report [1] we showed that under certain conditions
the image-domain and sinogram-domain penalized-likelihood ap-
proaches are, in fact, precisely equivalent. These conditions were
that

1) The objective function is convex.
2) The degradations can be modeled in the sinogram domain.
3) The geometric projection matrix linking the two domains is

invertible and the inverse matrix is available.
The last condition is obviously the most restrictive. More

commonly, one has an accurate but approximate inverse available,
such as that represented by a discretized analytic algorithm such
as FBP. In the previous work, we demonstrated provisionally that
even when using such an approximate inverse, one obtained very
similar resolution-variance trade-offs from both the sinogram-
and image-domain methods. This held for both linear (emission
tomography) and non-linear (transmission tomography) recon-
struction algorithms.

In this work, we provide a much more thorough comparison
between the two approaches. Building on the work of Fessler for
image-domain methods [2], we derive analytic expressions for
the resolution and variance properties of images reconstructed
using the sinogram-domain PL strategy. We compare the results
obtained using these expressions to those obtained using brute-
force Monte Carlo simulations and find they agree extremely

This work was supported by NIH Grant RO1-134680CA.Asterisk indicates
corresponding author.

P. A. Vargas is with the Department of Radiology, The University of Chicago,
Chicago, IL 60637 USA (e-mail: vargasp@uchicago.edu).

P. J. La Rivière is with the Department of Radiology, The University of Chicago,
Chicago, IL 60637 USA.

closely. We also compare the sinogram-domain and image-domain
methods for a variety of situations, including overdetermined
and under-determined system matrices. The sinogram-domain
and image-domain approaches continue to produce very similar
resolution-variance trade-offs for all of the cases explored. These
validated analytic expressions provide a tool for further optimiz-
ing the sinogram-domain approach.

II. M ETHODS

A. Measurement model

LetY = [Y1, .., YN ]′ denote a random measurement vector (e.g.
a noisy sinogram), whereN is the total number of measurements
in the scan. The′ denotes a vector transpose. The composite index
i will be used to specify the projection angle and the the location
of a particular detector element in the array. EachYi measurement
corresponds to the measurement of photons passing through the
patient along theith measurement line, which we denoteli. This
measurement line can be represented by the simple discretized
line integral

li =
M
∑

j=1

aijθj (1)

whereθ = [θ1, .., θM ]′ is the discretized linear attenuation map of
the object being imaged andaij represents a weighting element
of the the system matrixA. The transmitted number of X-rays
Φij at an average energȳE emerging unabsorbed and unscattered
from the patient along this line is given by the Beer-Lambert law

Φi = Iie
−

M∑

j=1

aijθj

. (2)

The photon fluenceΦi plus a numbersi scattered photons, are
detected in numbers assumed to be governed by Poisson statistics.
Each detected photon contributes to the measured detector signal
in proportion to its energyE, and with a constant of propor-
tionality by Gi. The detected signal is read out through detector
electronics having dark currentdi and electronic readout noise
assumed to be normally distributed with varianceσ2. Overall,
then, we assume that eachyi is a realization of a random
variableYi. The energy-weighted combination of Poisson random
variables results in compound Poisson statistics. We have shown
in previous studies that this polychromatic model can be mapped
to a monochromatic model with simple Poisson statistics [3]. In
this study our primary focus is noise and will assume the photons
are monochromatic and at the average energy which leads to
a simple Poisson model. We, also, assume thatIi, Gi, di, σ2

and the average energy of the incident beam are known from
calibration scans and dark-current measurements, and the scatter
can be estimated leading to the equation

Yi = Poisson{Φi}+ Normal
{

di, σ
2
i

}

. (3)
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B. Image-Domain Objective function

In fully iterative statistical image reconstruction from trans-
mission tomography measurements, one seeks to estimate an
appropriately discretized version of the attenuation mapθ. In
this paper this is accomplished by maximizing the penalized-
likelihood objective function

θ̂PL−I = argmax
θ>0

[L (θ,y) − βR (θ)] (4)

whereL (θ,y) is the Poisson log-likelihood function,R (θ) is
a penalty function, andβ is a regularization parameter. For the
remainder of this paper we will use the notionθ̂PL−I to represent
our image estimate from the penalized-likelihood approach in the
image domain.

C. Sinogram-Domain Objective function

Estimating the attenuation maps for datasets as large as those
acquired in CT is extremely computationally intensive. In pre-
vious work we considered a more modest but still meaningful
goal—that of estimating the set of monochromatic attenuation line
integralsli from the set of measurementsyi. The estimated line
integrals can then be input to a standard analytic reconstruction
algorithm. We estimate the set of line integrals needed for
reconstruction by maximizing a penalized-likelihood objective
function. According to the previous model, the measurements
follow statistical distributions given by the sum of a Poisson
distribution and a Gaussian distribution. We thus seek an to find
the estimate for the line integrals

l̂ = argmax
l>0

[L (l,y)− βR (l)] (5)

whereL (l,y) is the Poisson log-likelihood function,R (l) is a
penalty function, andβ is a regularization parameter. We then
estimate the image from the these line integrals with FBP

θ̂PL−S = BFBP
(

l̂
)

. (6)

whereBFBP is the discretized FBP matrix and the approximate
inverse of the system matrixA−1. For the remainder of this paper
we will use the notionθ̂PL−S to represent our image estimate
from the penalized-likelihood approach in the sinogram domain.

D. Local Impulse Response

For an estimator with mean̄̂θ, we we define the local impulse
response of theith pixel to be

lir j (θ) =
lim

δ → 0

ˆ̄θImp − ˆ̄θ

δ
=

∂

∂θj
θ̂, j = 1, ...,M (7)

where we define a new measurement model
Y Imp =

[

Y
Imp
1

, .., Y
Imp
N

]

′

which denotes a random

measurement vector ofθImp =
[

θ
Imp
1 , .., θ

Imp
M

]

′

. Here

θImp = θ + δej whereδej is a small impulse placed in thejth
pixel.

1) Brute Force Evaluation of Local Impulse Response: Most
estimatorsθ̂ (y) do not have an explicit analytical form. Thus
a numerical approach to evaluate the local impulse response
is a valid option, or estimating the sample mean by running
several realizations in a computer simulation. The following
recipe illustrates this brute-force approach. (1)Select an object
θ of interest and generate multiple realizations of noisy measure-
ments according to the densityf (y; θ). (2)Apply the estimator
of interest to each of the measurement realizations to obtain
estimates; estimate the sample mean. (3)Choose a pixelj of
interest and small valueδ, and generate a second set of noisy
measurements according to the densityf

(

y; θIMP
)

. (4)Compute
the sample mean from the second set and subtract the two images
to obtain the local impulse response.

2) Approximate Brute Force Evaluation of Local Impulse Re-
sponse: Several investigators have observed that the sample mean
of a likelihood-based estimator is approximately equal to the value
that one obtains by applying the estimator to noiseless data

ˆ̄θ = Eθ

[

θ̂ (Y )
]

≈ θ̂
(

Y (θ)
)

, θ̆ (8)

where θ̆ denotes the value of the estimator when given noiseless
data Ȳ . This approximation is equivalent to assuming that the
estimator is locally linear and leads to not only a simpler recipe
for numerically evaluation the local impulse response, but far less
computational. The procedure is. (1)Select an objectθ of interest,
a pixel j of interest and a small valueδ. (2)Generate two noise-
less measurements vectors:Y (θ) and Y

(

θImp
)

. (3)Apply the
estimator of interest to each of the two noiseless measurements,
obtaining estimateŝθ

(

Ȳ (θ)
)

and θ̂
(

Ȳ
(

θImp
))

. (4)Estimate the
local impulse response.

3) Analytic Evaluation of Local Impulse Response: Many
estimators in tomography are defined implicitly as the maximizer
of some objective function. We assumeΦ has a unique global
maximum, so thatθ (y) is well defined. Fessler has shown [4]
that penalized likelihood objective function have linearized local
impulse responses of the form

lir j =



A′D





Ȳ 2
i

(

θ̆
)

Ȳi (θ)



A+ βR
(

θ̆
)





−1

A′D





Ȳ 2
i

(

θ̆
)

Ȳi (θ)



Aej .

(9)
When evaluating this expression the local impulse response for

transmission tomography using the penalized likelihood methods
described become

lirPL−S
j = BFBP

[

DPL−S
θ̆2/θ

+ βR
]

−1

DPL−S
θ̆2/θ

Aej (10)

where

DPL−S
θ̆2/θ

= diag

















(

Aθ̆PL−S
)2

i

Ȳi (θ)

















(11)

and

lirPL−I
j =

[

A′DPL−I
θ̆2/θ

A+ βR
(

θ̆
)]

−1

A′DPL−I
θ̆2/θ

Aej . (12)

where

DPL−I
θ̆2/θ

= diag

















(

Aθ̆PL−I
)2

i

Ȳi (θ)

















. (13)
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4) Approximate Analytic Evaluation of Local Impulse Re-
sponse: For moderate or small values ofβ, θ̆ is a slightly blurred
version ofθ. Since the projection operationAθ is a smoothing
operator, the projectionsY (θ) and Y

(

θ̆
)

are approximately
equal. Also, sinceR is θ independent when using a quadratic
penalty the above expression simplifies to

lj ≈
[

A′D
[

Ȳj (θ)
]

A+ βR
]

−1
A′D

[

Ȳj (θ)
]

Aej (14)

When applying this approximation to the two penalized likeli-
hood methods we get

lirPL−S
j ≈ BFBP [Dθ + βR]−1

DθAej (15)

and
lirPL−I

j ≈ [A′DθA+ βR]
−1

A′DθAej (16)

where
Dθ = diag

{

Ȳi (θ)
}

. (17)

This estimation of the local impulse response is desirable since
it is independent of the PL estimate of the image and depends
only on the noiseless data.

E. Variance

Evaluating just the local impulse response itself is insufficient
since resolution has an inherent trade-off with noise. Thus, to
better measure the image quality we also evaluated the noise
properties of the estimators.

1) Brute Force Evaluation of Variance: Again, when there
is no explicit form for θ̂ (y), there is usually no explicit form
for the estimator variance either, and a numerical approach
becomes a valid option. The following recipe illustrates this brute-
force approach. (1)Select an objectθ of interest and generate
multiple realizations of noisy measurements according to the
density f (y; θ). (2)Apply the estimator of interest to each of
the measurement realizations to obtain estimates. (3)Estimate the
estimator mean using the sample mean. (4)Estimate the estimator
sample variance.

2) Analytic Evaluation of Variance: Fessler has shown [5] that
penalized likelihood objective function have covariances of the
form

cov {θ} =
[

A′D
θ̆
A+ βR

]

−1
A′DθA

[

A′D
θ̆
A

θ̆
+ βR

]

−1
.

(18)
This equation can be used in its current form to evaluate the
cov

{

θPL−I
}

. A similar derivation

cov
{

θPL−S
}

= BFBP
[

D
θ̆
+ βR

]

−1
Dθ

[

D
θ̆
+ βR

]

−1
BFBP′

(19)
can be used to evaluate the sinogram-domain PL estimate

3) Approximate Analytic Evaluation of Variance: Again, for
moderate or small values ofβ, the projectionsY (θ) andY

(

θ̆
)

are approximately equal. Also, sinceR is θ independent when
using a quadratic penalty the above expression simplifies to

cov
{

θPL−S
}

≈ [A′DθA+ βR]
−1

A′DθA [A′DθA+ βR]
−1

(20)
and

cov
{

θPL−I
}

≈ BFBP [Dθ + βR]−1
Dθ [Dθ + βR]−1

BFBP′.

(21)

III. RESULTS

A. Ellipse phantom and sinogram

For the numerical phantom, we used the 1024 × 1024 attenua-
tion image shown in Fig. 1, which has relative linear attenuation
coefficients of 0.030, 0.096 and 0.130] cm-1 in the hot disk (left),
background ellipse and cold disk (right) respectively. The pixel
size was .0375 cm. The background ellipse has a major axis of
34.54 cm and minor axis of 19.2 cm while the hot and cold disks
have 11.52 cm diameters. This phantom was created to match the
phantom used in Fessler’s work.

Figure 1. Numerical ellipse phantom used to determine image properties

To examine the performance of the proposed penalized-
likelihood algorithms, we simulated both noisy and noiseless
projections of this numerical phantom. We computed a sinogram
of 1024 parallel bins of extent .0375 cm at the isocenter by
1024 angles acquired over 360 degrees. We did not employ a
quarter detector offset. We simulated the data using a monochro-
matic spectrum at the average energyĒ. Due to computation
cost the forward projection data was rebinned using bilinear
interpolation to sinograms with more modest size dimensions.
These dimensions are listed with the experiment that used them.
When creating noisy sinograms, Poisson statistics according to the
forward model of Eq. 3 were used on the resized sinogram. The
electronic noise variance is equivalent to the counting statistics
variance corresponding to a mean of 10 detected photons under
the same model.

We reconstructed the images using several combinations of
smoothing and analytic reconstruction. The PLsino algorithm was
applied with 31 beta parametersβ and then reconstructed with
FBP using ramp and Hanning filters with .5fc. The PLimage

algorithm was used to reconstruct these images at 31 differentβ

values. FBP using the Hanning filter was used as initial guess.

B. System Matrices

In the standard transmission model the system matrixA is
an M × N matrix that forward projects the object data into the
sinogram domain. To reduce computational burdens the projec-
tion matrix was calculated once and then stored and accessed.
Additionally, symmetries in the projection matrix were exploited
to reduce the size. These matrices are also sparse, which further
reduced the storage.

C. Approximate Brute Force Evaluation of Resolution

Resolution was measured by the full-width half-max (FWHM)
metric. The index and value of the highest intensity pixel was
recorded. The index location of the pixels immediately below
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and above that value along the x and y-axis were recorded. The
half-max location was calculated by linear interpolation of these
pixels and used to calculate the full-width for the x-axis and y-
axis. Since the impulses are not isotropic, impulse profiles were
measured at 1 degree intervals and averaged together. Since the
image is discretized, this an unblurred impulse would have a
FWHM values between 1 and1

√
2.

The brute force method described earlier was implemented
at three location in the phantom; in the center of both discs
and in the center of the phantom. 1000 noisy realizations of
the simulated phantoms were created at anIi of 1e6 and then
reconstructed. Impulse,δ, of value of .05 cm-1 were added to the
simulated phantom and 1000 realizations of its sinogram were
also reconstructed. The resolutions were compared at each of the
31 β for both the penalized likelihood methods on sinograms
rebinned to 128x128 to the approximate brute force evaluation
of local impulse response. It was confirmed that the resolution
matched precisely and validated the use of the approximate
method with noiseless data.

IV. D ISCUSSION

The analytic approximations of sinogram-domain penalized
likelihood approach agreed very well with each other and the
Monte Carlo numerical simulations for a wide range of regular-
ization parameters. These results can be seen in Figure 2. The
analytic approximations of image-domain penalized likelihood
approach agreed very with each other and relatively well with
the Monte Carlo numerical simulation. These results can be
seen in Figure 3. The small discrepancy is thought to be due
to the propagating numerical errors in matrix operations. The
sinogram domain approach is less affected by this since its system
matrices are tridiagonal and operating on these matrices requires
extensively less mathematical operations. The two approaches,
also, match relatively well with each other. These results can be
seen in Figure 4. In future work we plan to introduce sinogram-
and image-domain degradations and geometry effects in the
system matrix.
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Figure 2. Resolution variance plots for the sinogram domain reconstruction
approach.
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Figure 3. Resolution variance plots for the image domain reconstruction
approach.
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Figure 4. Resolution variance plots for the both approaches.
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Iterative Image Reconstruction with Half Precision
Clemens Maaß and Marc Kachelrieß

Abstract—Recently, the authors have shown that an upcoming
lower precision floating–point data type can be adopted to reduce
the memory needs and to shorten reconstruction times of analytic
CT image reconstruction. This paper shows how these savings in
reconstruction hardware can be used during the computationally
even more demanding iterative image reconstruction and where
the limits of the new data type are. To do so, the SART
algorithm (simulataneous algebraic reconstruction technique) is
implemented using the half data type and the standard float
data type. The reconstruction results are compared regarding
the voxel noise and the convergence speed as a function of the
size of the subset of the projections that is used to calculate one
volume update. The results are that thehalf data type introduces
only insignificant additional image noise if the subset sizes are
not chosen too large.

Index Terms—CT Reconstruction, Image Quality, Fast Recon-
struction, Larrabee

I. I NTRODUCTION

I MAGES from computed tomography (CT) show highly
quantitative values. Typically, the Hounsfield scale is the

basis of CT image visualization and the dynamic range of the
images ranges from−1000 HU up to 3000 HU. This states
a quantization of the dynamic range of CT images in 4000
different steps.

Due to the drawbacks of floating–point processing in former
data processors there were experiments to use integer values
to handle CT data [1]. Today, those drawbacks are overcome
and the motivation to reduce data is the costly RAM and the
limited memory bandwidth that restricts the speed of today’s
reconstruction algorithms on CPU and GPU hardware.

In the past years, thehalf data type was discussed and finally
described in the IEEE 754-2008 standard. For example, current
GPUs support thehalf precision format and mainly profit from
reduced memory requirements. Further on, AMD’s streaming
SIMD extensions 5 (SSE5) that supplement the advanced
vector extensions (AVX) include instructions regarding thehalf
precision format [2], [3]. Even more sophisticated support of
this data type will be offered by the Intel Larrabee architecture
as it allows to implicitly convert betweenhalf and float
during data transfer between cache and register without loss
of performance [4], [5].Half floating–point values require
only 16 bit for each datum while thefloat values use 32 bit.
Since it is floating–point it combines a high dynamic range
with sufficient significant digits to allow to reconstruct and
represent high quality CT images. The authors have shown that
thehalf data type is sufficient to represent convolved projection
data [6] and to repesent the volume during backprojection
[7]. This work shows that the image quality loss is negligible

Institute of Medical Physics (IMP), University of Erlangen–
Nürnberg, Henkestr. 91, 91052 Erlangen. Corresponding author:
clemens.maass@imp.uni-erlangen.de

Fig. 1. Illustration of the allocation of the available bits to sign, exponent,
and mantissa for selected data types.

when using thehalf data type during standard iterative image
reconstruction.

II. M ATERIALS AND METHODS

A. IEEE floating–point standard

The IEEE 754 standard describes how real numbers are
approximated by finite precision floating–point numbers and
how this representation is done. Let0 ≤ S < 2s be the
s = 1–bit sign, 0 ≤ E < 2e be the e–bit exponent, and
0 ≤ M < 2m be the m–bit mantissa. A finite precision
floating–point numberX with b = s + e + m bits can be
represented as a function ofS, E, andM as follows:

X = X(S, E, M) = (−)S · 2E+1−2
e−1

· (1 + M · 2−m)

Note the hidden–1 representation for the mantissa magnitude
which effectively increases the number of bits by 1. Figure 1
depicts the allocation of the available bits ofhalf, float, and
double precision ons, e, and m. The special caseE = 0,
where IEEE 754 deviates from this normal representation and
switches to the sub–normal representation [6] is not described
here for the sake of simplicity.

B. Volume representation inhalf precision

In the range from−1000 HU up to 1000 HU there is a
special accuracy required that should not be lower than 1 HU.
A higher accuracy is not necessary, because most CT image
visualization tools work with integer values and are not able
to visualize a sub-HU scale. This is also in accordance with
the accuracy of a well calibrated CT scanner.

The 10 bit mantissa yields an accuracy of 11 bit because
there is a hidden–1 representation. This means, that for values
beween 0 and 2047 an accuracy of at least 1 can be maintained.
For the range between 2048 and 4095 at least an accuracy of
2 is available.

During the reconstruction process, the volume data are
typically not stored in the Hounsfield scale (CT–values) but
usingµ-values. The Hounsfield scale is defined as

CT–Value=

(

1000 ·
µ

µWater
− 1000

)

HU. (1)
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It is the nature of the floating–point format that the factor
between theµ–space and the HU–space does not affect the
data accuracy. However, the offset is relevant:−1000 HU
correspond toµ = 0. Therefore, the actual accuracy is at least
1 HU beween−1000 HU and 1047 HU and at least 2 HU in
the range 1048 HU to 3095 HU. This fits exactly the needs of
the physician: In ranges over 1000 HU the absolute CT value
is not as important as below those values.

C. Backprojection

The simulations in this paper use a standard voxel–driven
backprojection: Each voxel is projected on the detector and
linear interpolation is used to determine the value that needs to
be added to the given voxel. In reference [7] the authors have
shown that special care is necessary when using thehalf data
type during backprojection of filtered projection data. Filtered
backprojection has high requirements on the dynamic range
of the volume data type because each projection adds a very
small contribution to potentially large values.

In iterative reconstructions there is typically not the full
projection set backprojected at a time. In order to improve
the performance, often only a subset of the projections is
backprojected at a time (OS–EM, OSC, SART) [8], [9], [10].
Using subsets of the projection set relaxes the requirements
on the volume data type accuracy.

However, as reference [7] clearly shows that large subset
sizes (in combination withhalf data type) degrade the image
quality in analytic image reconstruction significantly, the num-
ber of projections per subsetNSub is an important parameter.
The influence ofNSub during iterative image reconstruction is
analyzed in this work, given a fixed total number of projections
N .

D. Forward projection

For the forward projection a Joseph–like algorithm is used
[11]. Volume values are accumulated along rays from the
source position to each detector pixel. The variable that
accumulates the values needs a high dynamic range because
a high number of voxels is accumulated. However, there is
no use in saving memory for the accumulation variable as —
depending on the implementation — this variable typically
does not leave the CPU’s cache or even not the CPU register.
Therefore, the accumulator is represented infloat precision.
Once the line integral is completely calculated for a ray, the
value is converted intohalf precision and stored into the
RAM. This scenario shows thathalf precision does usually
not constrain the forward projection step and the influence of
the reduced data type accuracy is restricted to the sinogram
representation.

E. Iterative reconstruction algorithm

In this paper, the simultaneous algebraic reconstruction
technique (SART) is used. The SART update equation is

fk+1 = fk + BPs





ps − FPs

(

fk
)

FPs (1)



 , (2)

Fig. 2. Visualization of the first two volume updates during the SART
reconstruction (k = 1). All occuring intermediate results are marked in green.
These intermediate results (volumes or projection sets) may be represented in
half precision.

where fk is the reconstructed image afterk, 1 ≤ k < K,
updates, FP denotes the forward projection as described above,
BP accordingly denotes the backprojection as described above,
and p denotes the original rawdata. The indexs is used
to denote the subset number0 ≤ s < S of the current
subiteration, whereS = N

NSub
is the total number of subsets.

Consequently, FPs and BPs work only on those projections
that belong to the subsets andps contains only the according
projection values. The parameterK = I · S, with I being
the number of iterations, defines how often the volume is
updated. When comparing reconstructions of different subset
sizes NSub, K is kept constant rather than the number of
iterations as the results were found to be better comparable
then.

Figure 2 illustrates the implementation of the SART image
reconstruction. The forward projection step of the current
volumefk yieldsqk

s . After application of the update equation
(2), the update rawdata setuk

s needs to be backprojected to
come up with an update imagegk. All intermediate projection
sets (pk

s , qk
s , uk

s ), the update volumegk
s , and the result of

updatek, fk, are visualized as green blocks in figure 2. All
those volumes and projections are represented inhalf precision
for reconstruction of thehalf imagef h and infloat precision
for the standardfloat imagef f .

F. Convergence speed

Since the used data type accuracy may influence the con-
vergence speed of the iterative image reconstruction, the con-
vergence speed is evaluated. To do so, after each updatek of
the reconstruction volume, the sum of the absolute difference
between the imagefk and thefloat precision reconstruction
result imagefK

f is calculated. This yields the normalized
convergence

Cν(k) =
|fk

ν − fK
f |

|fK
f |

, (3)

whereν = h denotes the convergence of thehalf image and
ν = f denotes the convergence of thefloat image.

The first international conference on image formation in X-ray computed tomography 229



Fig. 3. SART reconstructions of selectedNSub with noise added to projection data. Since all reconstructed images appear to be identical, only the difference
imagesfK

h,NSub
− fK

f,NSub
are shown next to the reference imagefK

f,64. The reconstruction error that is caused by the reduced precision of the data is
insignificant for small subset sizes and becomes more significant when using larger subsets. Note that the presented difference imagesfK

h − fK
f do not use

the same number of iterations but the same number of updatesK = N = 768, such thatI = NSub.

G. Experiments

Simulations of different phantoms were performed to eval-
uate the abilities of iterativehalf precision reconstructions.
All simulations were performed using the center slices of
the Forbild thorax phantom, the Forbild head phantom, and
the micro–CT mouse phantom [12]. Projection data were
simulated by analytically calculating line integrals through
the mathematically defined objects that are combined using
constructive solid geometry. Noise–free projections and pro-
jections with Gaussian noise were used in all experiments.

Projection data ofN = 768 projections that are equiangu-
larly distributed on a 360o rotation were simulated in two di-
mensional parallel beam geometry with quarter detector offset.
A detector with 512 pixel was simulated and reconstructions
use an image matrix of512 × 512 voxels. The size of the
field of measurement (FOM) was adapted to fit the phantom
into it by adaption of the detector pixel size and voxel size.
This resulted in an FOM diameter of 500 mm for the thorax
phantom, of 250 mm for the head phantom, and of 33 mm for
the mouse phantom.

Using these simulations, the image quality is evaluated
for SART reconstruction by comparing gold standardfloat
precision reconstructions withhalf precision reconstructions
for different values ofNSub ∈ {1, 2, 4, 8, 16, 32, 64}. This is
done visually by difference images, by voxel noise evaluation
of a region of interest, and by plotting the convergence speed
C(k).

III. R ESULTS

A. Dependency onNSub

NSub 1 2 4 8 16 32 64
Thorax phantom

fK
f 14.4 9.7 7.8 7.2 7.0 7.0 6.9

fK
h 14.5 9.8 7.9 7.4 7.4 7.5 8.4

fK
f − fK

h 0.1 0.1 0.1 0.2 0.4 0.5 1.5
Head phantom

fK
f 16.0 10.3 8.2 7.5 7.3 7.2 7.2

fK
h 16.2 10.3 8.3 7.7 7.5 7.5 8.4

fK
f − fK

h 0.2 0.0 0.1 0.2 0.2 0.3 1.2
Mouse phantom

fK
f 10.5 7.2 5.8 5.4 5.3 5.2 5.2

fK
h 10.7 7.3 6.1 5.7 5.8 6.1 6.8

fK
f − fK

h 0.2 0.1 0.3 0.3 0.5 0.9 1.6

TABLE I
EVAL UATION OF THE STANDARD DEVIATION IN ROIS OF

WATER–EQUIVALENT DENSITY AS A FUNCTION OF THE SUBSET SIZENSUB

IN HU.

Figure 3 shows the reconstruction results usingfloatandhalf
data precision as a function ofNSub. Thereby only selected
numbers ofNSub are shown. Table I lists the noise values
measured in a selected ROI of water–equivalent material in
float andhalf reconstructions of each phantom.

It is noticeable that the additional quantization noise that
comes with thehalf precision is constant at an insignificantly
low level up to a subset size of about 32. Then, image quality
starts to suffer significantly from the reduced data accuracy.
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This is also noticeable in the difference images of figure 3:
These images show only low level noise for subset sizes
between 1 and 32. For a subset size of 64, edges of the
phantom appear in the difference image in addition to the
noise. Consequently,half precision should not be used when
reconstructions work with unusual large subsets.

B. Convergence

Fig. 4. Convergence of the Forbild head phantom during SART reconstruction
with K = N = 768. The selected plot shows the convergence for a subset
size ofNSub = 16.

Figure 4 plots the convergenceC(k) of thehalf and thefloat
reconstructions of the Forbild head phantom usingNSub =
16. It is clearly visible that during the whole reconstruction
process both plots are almost identical. This proves that the
convergence of the image is not influenced by the reduced data
precision.

By definition, the convergenceCf(K) = 0. This means, that
Ch(K) > 0 describes the difference of the final images and
represents the additional quantization noise and the different
propagation of quantum noise in thehalf image.

IV. D ISCUSSION

The evaluation of the image noise shows that for large
subset sizes the additional quantization noise is not acceptable.
However, large subsets (i.e. more than 64 projections that are
processed at a time to come up with one volume update) are
unusual. Typical SART reconstruction uses small subsets and it
has turned out that then the additional quantization noise that
comes with thehalf precision is negligible. The additional
quantization noise can be expected to be object–dependent
but independent of the quantum noise. As a consequence, for
higher quantum noise levels than those used in this study, the
influence of the additional quantization noise is even lesser.

Since thehalf data type is a method to improve the usage
of given hardware resources, the results must be seen in
the context of a constant reconstruction time on a given
hardware. There may be cases where the introduction of the
half precision can actually double the reconstruction speed.

This could be the case if the speed of the reconstruction
process is strongly limited by the memory bandwidth or if
the required data exceed the local RAM of a graphics board.
One can read from table I that then doubling the subset
size and simultaneously introducinghalf precision has the
potential to yield reconstructions of less image noise for a fixed
reconstruction time. Doubling the subset size of the SART
reconstruction almost doubles the computational load what is
compensated by the doubled reconstruction speed when using
half precision data.

V. CONCLUSION

Half precision floating–point values have the potential to
represent a CT image at sufficient accuracy and can thereby
speed up image reconstruction on a given hardware. It has
been shown that SART reconstruction where projection data
and volume data are completely represented inhalf precision
is possible with the penalty of slightly increased image noise.
The use ofhalf precision is not indicated if large subsets are
used.
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Abstract- Radiation dose to individual organs is a proper dose 
metric to be used in CT because it more accurately reflects 
actual risk than do standard dosimetry indices such as CTDI. 
The feasibility of reducing organ dose by controlling tube start 
angle and table height was studied using Monte Carlo 
simulations. Simulations were performed on several voxelized 
patient models under a variety of conditions. The results 
showed that the control of tube start angle can reduce dose to 
small peripheral organs by 20% to 40%. The control of table 
height can reduce organ dose by 10% to 50%. The 
combination of controlling both amplifies the dose saving. 
This study introduces two new techniques to reduce radiation 
dose to selected organs in CT without changing tube output. 
They have minimal effect on image quality. 

 
I. INTRODUCTION 

 
Radiation dose from CT continues to be of interest to the 

medical imaging community. The risk involved with this level 
of radiation dose is not fully understood because of the lack of 
data at these low dose levels. However, the implications of CT 
radiation dose on public health may be significant. For 
example, a study suggested that 0.4% of all recent cancers in 
the United States may be attributed to CT radiation dose 
performed between 1991 and 1996. If organ specific cancer 
risk caused by ionization from CT was evaluated, this cancer 
rate can go up to 1.5% to 2% [1]. The radiation dose delivered 
to pediatric patients has come under scrutiny because of their 
high risk per unit dose [2] and the higher dose they receive 
unless the scanning protocol is adjusted for their smaller size. 
Various approaches have been developed to reduce radiation 
dose, including tube current modulation [3], adjusting mAs for 
patient size [4,5], and lowering kVp (especially for studies 
using iodinated contrast [6]).  

The larger coverage afforded by wider z-axis beams in 
MDCT creates larger cone angles and greater beam 
divergence, which results in substantial surface dose variation 
for helical and contiguous axial scans. This phenomenon has 
the potential to be used in patient scans for dose reduction 
purposes. A previous study evaluated this variation of in both 
cylindrical and anthropomorphic phantoms [7]. Figure 1 
shows the peripheral dose profiles on a CTDI body phantom at 

various tube start angles. Different tube start angles create a 
phase shift in the peripheral dose profile, resulting in dramatic 
variation in dose at a given z-axis location (e.g. location 0 in 
figure 1). In the light of these ‘hot spots’ or ‘cold spots’ 
created by the change of tube start angle, it may be feasible to 
exploit these variations to reduce dose to selected 
radiosensitive peripheral organs solely by varying the tube 
start angle in CT scans, especially if these organs have relative 
small extent in the longitudinal direction.  

The table height during a CT scan has drawn some 
attention in recent years and it has implications for both 
radiation dose and image quality [8, 9]. Our recent 
measurements on a CTDI 32cm phantom indicated that as the 
table moves up, CTDI at the 12:00 position decreases. This 
phenomenon may be utilized for organ dose reduction.  

Therefore, the purpose of this work was to extend the 
previous simulation work to investigate the effects of the 
change of tube start angle and table height on patient organ 
dose and explore their potential combined use for organ dose 
reduction 

 
II.   MATERIAL AND METHODS 

 
A.    CT scanner model and patient models 

Monte Carlo method was used to simulate the spectrum 
and geometry of the CT source, the geometry of the patients, 
as well as the transport of photons. A previously developed 
CT source model was used in this study [10~12]. This model 
was validated and benchmarked using comparisons based on 
standard dosimetry (CTDI) measurements and corresponding 
simulations, which agreed to within 5%. In this study all the 
simulations were performed on a Siemens Sensation 64 
MDCT scanner model. For patient models, the GSF (now: 
Helmholtz Zentrum München) phantom series was used. 
These are voxelized patient models with segmented individual 
organs [13]. In Monte Carlo simulations, the mean dose to an 
organ was estimated by averaging the dose to each voxel 
across all the voxels belonging to that organ, and the 
simulations were operated in photon transport mode with a 
low-energy cutoff of 1keV. Charged-particle equilibrium 
(CPE) was assumed so that all the secondary electrons deposit 
their energy at the photon interaction sites. 
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Figure 1.  Peripheral dose profile on 32cm CTDI phantom for different start tube start angles using pitch 1.5 and collimation 24x1.2mm. 
 
 

B.    Simulation experiments 
1. Dose reduction by varying tube start angle only 

To demonstrate the organ dose reduction from the change 
of tube start angle, especially for small peripheral organs, 
radiation dose to several radiosensitive organs (including 
breast glandular tissue, thyroid, uterus, gonads, eye lens) 
resulting from helical scans. These were estimated using 
Monte Carlo simulation son voxelized patient models, 
including GSF’s Baby, Child, and Irene, which were chosen to 
represent a range of patient size. Dose to fetus was also 
estimated using 4 pregnant female models. Whole body scans 
were simulated using 120kVp, 300mAs, both 28.8 mm and 40 
mm nominal collimation, and pitch value of 1.5, under a wide 
range of start angles (0 to 340 degrees in 20 degree 
increments). The relationship between tube start angle and 
organ dose was examined for each organ and potential dose 
reduction was calculated. 

 

2. Organ dose reduction by varying table height only 
  To demonstrate the organ dose reduction effect from the 

change of table height, Monte Carlo simulations for full body 
scans were performed at various table heights (from the table 
height where the center of the patient is 12cm below the 
isocenter of CT gantry to the table height where the center of 
the patient is 12cm above the isocenter of CT gantry, with 
0.75cm increments) for GSF Irene phantom. All the simulated 
scans were performed at 120kVp, 200mAs, 28.8 mm 
collimation, and pitch of 1.5. 
3. Organ dose reduction by varying both tube start angle and 
table height 

To investigate the dose benefits to organs by controlling 
both tube start angle and table height in CT scans, simulations 
were performed to estimate radiation dose to all radiosensitive 
organs for four different GSF models which span a range of 
sizes (Baby, Irene, Helga, and Visible Human) under different 
combinations of tube start angles and table heights. The tube 
start angle ranges from 0 degree to 340 degree with 20 degree 

increments, and the table height ranges from 4cm below the 
isocenter to 12cm above the isocenter. Full body scans were 
performed for all four patient models, all combinations of tube 
start angle and table heights at 120kVp, 200mAs, 28.8mm 
collimation, and pitch of 1.5. 
 

III.   RESULTS 
 
A.    Dose reduction from changing tube start angle to small 
peripheral organs 

Some organs exhibit strong dose variation depending on 
the tube start angle. For small peripheral organs, (e.g. the eye 
lenses of the Baby phantom at pitch 1.5 with 40 mm 
collimation), the minimum dose can be 41% lower than the 
maximum dose, depending on tube start angle. In general, 
larger dose reductions occur for small peripheral organs in 
small patients when wider collimation is used. The maximum 
dose reduction for pregnant patient models shows that the 
magnitude of dose reduction to the fetus for pitch 1.5 can be 
18% for the early gestational age models (≤ 12 weeks) for 40 
mm collimation setting. Results from the later gestational 
model (19 weeks) used in this study little  dose reduction. 

  The angle reported is the angle of the source as it crosses 
the longitudinal center of the organ being investigated, which 
is called the Organ Crossing Tube Angle (OCTA). The OCTA 
resulting in the highest dose was used as the worst case 
reference and the dose reduction was calculated for each 
OCTA value. The organ dose reductions are shown in Figure 2 
by plotting the % reduction of organ dose as a function of the 
OCTA for Child phantom for 28mm collimation and pitch of 
1.5. The organ dose reduction as a function of OCTA can be 
observed from the figure. It was shown that for pitch 1.5 
scans, the dose is usually lowest when the tube start angle is 
such that the x-ray tube is posterior to the patient when it 
passes the longitudinal location of the organ (OCTA = 180). 
For each organ on a specific patient, there is a deterministic 
relationship between the OCTA and tube start angle so a tube 
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start angle can be calculated to make OCTA of 180. These 
results demonstrate that radiation dose to small peripheral 
organs can be reduced by controlling tube start angle.  

 
Figure 2. The organ dose variation curves for Child phantom from a 

simulated CT scan with pitch 1.5 and 28mm nominal collimation. 
 
B.    Dose reduction to all organs from changing table height 

Figure 3 shows the results about radiation dose to several 
radiosensitive organs for GSF Irene model at various table 
heights. Dose to breast glandular tissue, kidney, eye lens and 
rectum are shown in this figure. These results show that the 
change of table height has considerable effect on the organ 
dose. For example, by moving the table 12cm up, dose saving 
to eye lens can be 48%, and dose saving to breast glandular 
tissue can be 29%, compared to the table position where the 
patient is center at CT isocenter. 

The dose saving trend is not consistent among all the 
organs. For example, by moving the table up, dose to 
glandular breast tissue decreases, but dose to kidneys increases 
a little bit (around 10%) before it decreases again. By 
summarizing the dose saving behavior for all the organs, it 
was shown that for anterior organs (e.g. glandular breast 
tissue), dose decreases as the table moves up; for posterior 
organs (e.g. kidneys), dose decreases as the table move down. 
As the table is far away enough from the isocenter (e.g. more 
than 10cm), all the organ receive lower dose. The rationale of 
this trend will be discussed in section IV. These results 
demonstrate that radiation dose to selected organs can be 
reduced by controlling table height. 

 

 
Figure 3. Radiation dose to several radiosensitive organs of GSF 

Irene at various table heights. 

 

C.    Organ Dose reduction on patients with different size by 
controlling both tube start angle and table height 

For large organs (e.g. larger than the table increment per 
rotation), the dose saving from controlling tube start angle is 
very small, therefore most of the dose saving is from the 
control of table height. Figure 4a shows the dose to breast 
glandular tissue for Helga as a function of tube start angle at 
different table heights. Dose does not change much across 
tube start angle, but the dose saving could be as high as 20% 
when the table is raised by 12cm, compared to isocenter. 
Table I lists the percent dose reduction when table is raised by 
12cm for several organs with highest weighting factors 
(radiosensitivity) for all four patient models, averaged over all 
the tube start angles (e.g. averaged over each curve in figure 
4a). These organs happen to be fairly large or non-peripheral 
organs and therefore tube start angle has a minor effect. 

 
Table I. Dose saving achieve by raising the table by 12cm, averaged over 

all the tube start angles. 
 Red 

Bone 
Marrow 

Colon Lung Stomach Gonad 

Baby 24% 30% 23% 32% 23% 
Irene 16% 30% 13% 30% 16% 
Helga 16% 23% 7% 24% 9% 
Visible 
Human 

12% 27% 10% 25% 34% 

 
For smaller organs, dose variation is created by both table 

height and tube start angle. For example, figure 4b shows the 
dose to breast glandular tissue for Baby as a function of tube 
start angle at different table heights. This figure shows 
considerable dose saving from the combination of selection of 
tube start angle and table height. For example, there can be as 
much as 68% dose saving when the optimum OCTA is chosen 
at table height of 12cm comparing to the worst case scenario 
at table height of 0. In addition, dose reduction effects from 
tube start angle and table height interact with each other and 
the overall dose saving can be amplified. For example, when 
the patient is centered, the dose benefit from tube start angle 
dose is 25%; when the patient is located 12cm above isocenter, 
the dose benefit from tube start angle can be as high as 55%. 
This is because the dose saving from tube start angle is higher 
at more peripheral positions because of the more significant 
surface dose variations. And raising the table higher puts a lot 
of organs into more peripheral positions. 
 

IV.   DISCUSSION and CONCLUSION 
 

All current dose reduction schemes in CT involve the 
change of the output of the x-ray tube, for example, reducing 
mAs or kVp. In this study, Monte Carlo method based 
simulations were performed to investigate the feasibility of 
two new dose reduction strategies in CT without change tube 
output by the controlling of tube start angle and table height. 
The results showed considerable dose reduction to selected 
organs by either using one of these two strategies or the 
combination of them. 
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The effectiveness of controlling tube start angle on dose 
reduction on small peripheral organs is due to the surface dose 
variation introduced by the helical source pathway and wide 
cone angle. This technique may be applied to a small organ on 
small patients, fetus on pregnant patients with early gestational 
stage, or eye lenses on adult patients. 

 

 
(a) 

 
(b) 

Figure 4. Radiation dose to breast glandular tissue as a function of 
OCTA at various table heights for: a) Helga; b) Baby. 

 

  The effectiveness of controlling table height on dose 
saving can be attributed to the bowtie filter. Because of the 
shape of the bowtie filter, if an object is scanned close to the 
isocenter in the CT gantry, it always receives lowest filtration 
from the bowtie filter from each projection and therefore 
receives higher dose, while if it is far away from the isocenter, 
it receives high filtration caused by the bowtie filter in many 
projections and hence has lower dose. When this principle is 
applied to a patient, dose to organs at different locations will 
behave differently. Specifically, dose to an organ would 
decrease if the table is moved such that this organ is further 
away from isocenter. And it would increase if the table is 
moved such that this organ is closer to isocenter. However, 
when the table is far enough from isocenter all the organs 
would receive lower dose because they are essentially all 
moved away from isocenter. This was illustrated in figure 3. 

  In summary, this study introduces two new techniques to 
reduce radiation dose to selected organs in CT. These two 
techniques should have minimum effect on image quality. 
Tube start angle has no effect on image quality because it is 
not controlled by the user and is either a completely random 
variable or a limited random variable in current commercial 
CT scanners. Table height does have some effect on image 
quality (for example, increase the noise for the part of the 
image where dose is lower [9]), however, this can be avoided 
in clinical applications by identifying the  anatomy of interest 
and the dose reduction site. For example, the table can be 
raised to reduce breast dose for kidney examinations. 
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    Abstract- The use of Monte Carlo radiation transport codes have 

become a popular method to estimate the radiation dose to 

radiosensitive organs in patient models from scans performed with 

modern Multidetector row Computed Tomography (MDCT) 

scanners. The purpose of this abstract  is to review common 

approaches to the development and utilization of Monte Carlo 

MDCT dosimetry packages and to propose a standardized series of 

benchmarking experiments that can be used to validate different 

components of these codes. The ultimate goal of this work is to 

develop a standardized test suite that is universal to any Monte 

Carlo CT dosimetry code whose results can be used to directly 

compare different simulation packages. 

 

I. INTRODUCTION 

 

  Recent studies report that from 1993 to 2006 the number of 

computed tomography (CT) imaging procedures increased at 

an annual rate of over 10% in the United States leading to a 

considerable increase in the collective radiation dose from 

CT.1 Specifically, CT exams now constitute 15% of the total 

number of radiological imaging procedures and contribute 

over half of the population’s medical radiation exposure.1 It 

has been suggested that the most appropriate quantity for 

assessing the risk due to diagnostic imaging procedures is the 

radiation dose to individual organs. 

   The use of Monte Carlo radiation transport codes that 

simulate the delivery of radiation from CT scanners to patient 

models has become a popular method of investigating organ 

dose. Typically, these codes take into account scanner-specific 

characteristics such as x-ray energy spectra, filtration designs, 

beam collimation, fan-angle, and pitch to model. Conventional 

Monte Carlo radiation transport techniques are used to track 

the path of simulated photons through a computational 

anthropomorphic phantom and tally the dose deposited in 

regions of interest.  

  The Monte Carlo approach has a number of advantages over 

measuring dose to organs in anthropomorphic phantoms using 

point dosimeters. Physical measurements require detailed 

calibration of dosimeters and assume organ doses can be 

approximated by point dose measurements. Also, Zhang et al. 

have shown, measurements made on the surface of cylindrical 

and anthropomorphic phantoms may have large variations (up 

to 50%) for helical scans depending on pitch and start angle.2  

  A number of different techniques have been employed by 

different research groups in order to develop Monte Carlo CT 

dosimetry packages that model specific multidetector CT 

(MDCT) scanners.3-6 The disparities between the different 

packages range from fundamental radiation transport 

techniques to advanced aspects of modeling MDCT scanners. 

For example, it is common to base simulation packages on 

well-validated, general purpose radiation transport codes such 

as the Monte Carlo N-Particle (MCNP) code from Los Alamos 

National Laboratory; however, some groups have created 

radiation transport code from scratch. Also, the methods used 

to model the delivery of radiation from CT scanners can be 

quite different. On an even higher level, the data sets used to 

simulate a specific scanner, such as x-ray energy spectrum or 

filtration design, can vary across different codes. 

  Most Monte Carlo modeling publications include 

descriptions of benchmark experiments carried out to validate 

the code. Commonly, simple phantom measurements (such as 

CTDI) are compared to analogous simulations. The question 

arises as to whether typical validation experiments sufficiently 

provide the confidence necessary to support the detailed 

results and conclusions being published in the literature. Is it 

sufficient to match a measured value for a single axial scan 

measurement (such as CTDI) to validate a study that 

ultimately reports dose from helical scans? Do the assumed 

scanner-specific input parameters (such as energy spectrum 

and filtration) adequately represent the physical characteristics 

of that scanner with respect to two- and three-dimensional 

dose profiles in a realistic heterogeneous environment? Is the 

degree of detail when modeling patient anatomy and tissue 

suitable to calculate and report specific organ dose values?  

  In order to address these questions, the purpose of this work 

is to propose a set of generalized benchmark techniques meant 

to more completely validate various pieces of a simulation 

package. These validation experiments will be proposed in 

such a manner so that a centralized database of physically 

measured results can be made available along with all relevant 

simulation inputs except for the portion of the simulation 

package being validated. In other words, all variable inputs 

necessary for the simulation will be provided except for the 

input being tested. Ideally, the final product will be a 

standardized benchmark suite that can be universally applied 

for validating any Monte Carlo CT dosimetry code and that 

will allow direct comparisons of different simulation 

packages.  

 

II.  OVERVIEW OF MDCT MONTE CARLO 

SIMULATIONS    
 

A.     Radiation transport algorithm 

 

  The most elemental component of a dosimetry simulation is 

the Monte Carlo radiation transport code used to track 

particles and tally energy deposition. These codes use 
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statistical methods to randomly sample the potential physical 

interactions of elementary particles (photons and electrons) 

with matter while keeping track of the resulting transferred 

energy. This can be done using either experimental or 

theoretically derived cross-section data. Simulating a large 

number of particles and computing a running average should 

result in computed energy depositions that approach those 

observed in nature.  

  Many MDCT dosimetry packages are built upon general 

purpose transport codes like MCNP.2-5 These “canned” 

transport codes have undergone rigorous benchmarking and 

the MDCT simulation packages that utilize them can be 

considered sufficiently accurate in regards to their transport 

capabilities. However, some packages utilize transport codes 

written in-house6. The intricate details of the techniques 

employed in these transport codes are generally not described 

in publications. A first step in developing a convincing 

simulation package would therefore be to validate the 

accuracy of the underlying transport methodology in order to 

gain confidence in the sampling techniques and cross-section 

data being employed. 

          

B.    Source motion and x-ray trajectories 

 

  Various techniques have been used to simulate the paths 

traversed by the x-ray source of MDC scanners. In some 

packages the initial position of each photon is randomly 

sampled from continuous functions that describe the source 

path with respect to the patient geometry3. Source motion 

functions can be formulated for both axial and helical scans 

and typically are dependent on scanner- and protocol-specific 

characteristics such as the source-to-isocenter distance, the 

nominal collimation setting, and pitch. Alternatively, some 

packages individually specify a discrete number of source 

positions to describe the source path4,5. For example, one 

group simulated a single axial scan with 72 stationary line 

sources, parallel to the axis of rotation, each with a length 

equal to the longitudinal length of the bowtie filter and located 

on a circle with a radius equal to the focal spot to isocenter 

distance. A bowtie filter was then placed in front of each 

source for the simulation4.  

  Based on the starting location of the photon, it is necessary to 

select an initial direction. The techniques used for sampling 

the direction space also differ among the published simulation 

packages. Some groups use isotropic x-ray emitters and 

collimate based on the source position while others explicitly 

define the potential trajectories for a given source position and 

randomly sample from them. In most cases this step takes 

scanner-specific fan-angles and measured beam widths are 

into account. The particular choice of methods can alter the 

necessary modeling of actual beam widths as well as 1/r2 

intensity effects.  

 

C.     Scanner-specific source model 

 

  In order to perform Monte Carlo simulations of a specific 

commercially available MDCT scanner it is necessary to 

acquire a detailed description of the scanner’s x-ray energy 

spectrum, the bowtie and inherent filtration design, and the 

geometry of the scanner (e.g. focal spot to isocenter distance, 

fan angle, z-axis collimation, cone angle settings, etc.).  While 

it is usually possible to ascertain the geometry of a scanner 

from documentation, descriptions of filtration and spectra are 

generally proprietary. To circumvent this limitation some 

groups have worked with scanner manufacturers to obtain 

spectra and filtration designs (usually through a non-disclosure 

agreement)4. Others have used generic tungsten anode x-ray 

energy spectra3 that are based on experimentally 

measurements or theoretically derivations. This approach still 

requires information about filtration, which is usually acquired 

from the manufacturer. Alternatively, studies have been 

performed to examine the utility of obtaining spectrum and 

filtration schemes based on measurement. Turner, et al. 

published a method to generate scanner-specific “equivalent” 

spectrum and filtration based on a series of measurements7. 

Gu et al. described an approach in which  a number of 

parameters are optimized in order for simulated 32 cm CTDI 

values at center and periphery to match measured values5. 

Their parameters included anode angle (used to choose an 

energy spectrum), flat filter thickness, bowtie filter shape, and 

number of source points. 

   

D.     Patient modeling techniques 

 

  Most simulation packages use voxelized anthropomorphic 

computational models that feature detailed organ contours, 

typically generated directly from patient images, either by 

manual segmentation or by threshold algorithms based on CT 

numbers. Despite the improvement over stylized and 

mathematical phantoms in terms of anatomical accuracy, these 

packages still make assumptions and simplifications when 

assigning material composition and density values to the 

individual voxels. For example, a number of codes assume 

scanned objects consist only of air, water/soft tissue, and bone. 

This type of approximation is often used when organs are not 

individually identified prior to simulation. On the other hand, 

if contoured organs are identified it would possible to assign 

material composition and density values to voxels based on 

their corresponding organ assignment. Appropriate elemental 

compositions and density values can be found in the literature, 

for example in the ICRU-44 composition of body tables. Also, 

the data sets that these models are built from do not always 

include the entire patient anatomy. Therefore, with these 

models it impossible to tally dose in regions of the body 

adjacent to the scan volume or account for potential scatter 

from absent anatomy. It is currently unknown the magnitude 

of errors these type of assumptions introduce for dose 

calculations.  

 

III. PROPOSED VALIDATION METHODS 

 

  In this section a proposed series of experiments are described 

that could be used to rigorously validate the accuracy of a 

Monte Carlo MDCT dosimetry package. The goal of these 

experiments will be to benchmark each part of the simulation 
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code, starting with the most fundamental pieces and moving 

toward the more detailed. Specifically, we recommend 

experiments to validate the radiation transport code, the 

generalized source motion/collimation model, scanner-specific 

source model inputs (x-ray energy spectrum, filtration, 

geometry), and the anthropomorphic patient models. 

  The approach taken in these proposals all involve publishing 

data sets for Monte Carlo simulation results to be 

benchmarked against. Additionally, all inputs and parameters 

necessary to perform the required simulation, except for those 

being tested, will be provided. For example, if longitudinal 

dose profile measurements for a helical scan are obtained with 

a specific scanner the energy spectrum and filtration design 

necessary to simulate that scanner will be published. It would 

then be possible to test the methods used to model the source 

motion for a helical scan. This systematic approach was 

chosen because it allows individual components of a MDCT 

simulation package to be tested and compared to other 

packages. 

   

A.     Radiation transport algorithm 

 

  As described in section II.A, simulation packages that utilize 

general purpose transport codes like MCNP are typically 

considered validated with respect to their transport 

capabilities. However, it is important for in-house transport 

codes to be thoroughly tested. A series of simple simulations 

were proposed by Nikolopoulos et al. that were performed 

using both MCNP and various application specific codes for 

simulations in the diagnostic energy range.9 Each of the 

proposed simulations involves simulating a narrow beam of 

photons perpendicularly incident on a water phantom with 

infinite surface area from a distance of 1 cm. The tests include 

tallying: 

 the number of interactions per simulated photon in water 

phantoms of three different thicknesses (10, 15, and 20 

cm) at various energies (20-100 keV)  

 the depth of energy deposition in a 10 cm thick water 

phantom (energy deposited in 1 cm thick slabs, moving 

away from the source) for monoenergetic x-ray beams of 

15, 20, and 30 keV      

 the lateral spread of energy deposition inside of an 8 cm 

thick water phantom (energy deposited in 1 cm wide slabs 

4 cm deep, emanating out from the phantom center) for 

monoenergetic x-ray beams of 50 keV. 

The results presented by Nikolopoulos et al. suggest that 

relative differences between the codes should be less than 

approximately 10% for the majority of these tests (a few 

differences were 15-20%) in order to sufficiently validate a 

transport code. The data presented in this paper may be used 

as an initial benchmark set that researchers can use to validate 

their own codes. It also may be beneficial to extend the range 

of energies up to 140 keV, which is the typical upper limit 

used by MDCT scanners. 

          

B.    Source motion and collimation 

 

  Section II.B outlined the various techniques used to model 

source motion and photon trajectory. Benchmarking is 

normally performed by comparing analogous simulated and 

measured longitudinal dose profiles obtained with a series of 

point dosimeters placed the surface of a phantom. This 

approach can be problematic because, as described by Zhang 

et al., the shape of a surface dose profile depends on both pitch 

(for a helical scan) and the gantry angle at which the tube 

turned on2. Typically, the “start angle” cannot be controlled 

when obtaining contiguous axial or helical scans for most 

scanners (especially in clinical scan modes). As a result, it is 

often necessary to artificially shift the simulated dose profile 

so its phase matches that of the measured profile, which 

potentially negates the comparison. Additionally, Zhang et 

al.’s work indicates that the surface dose effects for very low 

pitches may necessitate nearly continuous measurements 

instead of a series of discrete points.          

  In order to more carefully and thoroughly assess the source 

motion for axial and helical simulations we propose that 

longitudinal dose profiles be obtained using a method similar 

to that described by Deak et al.8 Approximately continuous 

dose profile measurements will be made in the center and 12 

o’clock positions of the 16 and 32 cm CTDI phantoms. This 

can be done using custom made TLD inserts (as described by 

Deak et al.) or using OSL strips (as described in Turner, et 

al7). These dose profiles will be obtained for a single axial 

scan as well as 10 cm helical scans with pitches of 0.5, 1, and 

1.5. Each measurement will be performed using both the 

narrowest and widest collimations using a single MDCT 

scanner (i.e. Sensation 64) at one tube voltage. For each scan, 

the start angle of the scan will be obtained from the raw data 

file of the scanner. The single axial scans will determine the 

accuracy of the collimation model while the helical scans will 

validate the simulated source motion. The provided inputs for 

the simulations will include the scanner-specific equivalent x-

ray energy spectrum, the bowtie filter description, scanner 

geometry, start angle for each scan, and phantom model. This 

information can then be used with the user’s simulation 

package to simulate single axial and helical scans analogous to 

the described measurements and compare the results. 

 

C.     Scanner-specific source model 

 

  In order to publish results that are intended to be specific to a 

particular MDCT scanner it is necessary to thoroughly 

validate the source model parameters described in section II.C. 

This is often done using CTDI validation techniques, which 

confirms that the source models can match measurements in a 

simple, homogenous cylindrical phantom. We propose a more 

meticulous procedure that validates the energy spectrum and 

bowtie filter with a variety of benchmarks. Measurements 

include:  

 CTDI100 at center and periphery for 16 cm and 32 cm 

phantoms for each protocol condition 

 exposure in air samples from isocenter to top of bed’s 

range, with the tube parked, normalized to isocenter value 

(to sample across bowtie filter), as shown in figure 1 

238 The first international conference on image formation in X-ray computed tomography



 dose at several points in multiple slices of a 

heterogeneous, non-uniform phantom (i.e. Rando-

Alderson phantom) using point dose dosimeters (i.e. 

TLDs or small ion chambers) for each protocol condition. 

 

 
 

Fig. 1. Exposure as a function of distance from isocenter using a fixed tube 

position. 
 

  A data base of these measurements will be published for all 

MDCT scanners and available protocols (all bowtie filters, 

collimations, tube voltages, etc). Additionally, voxelized 

and/or geometric models of the phantoms will also be 

published. Analogous simulations can then be performed with 

the input spectrum and filtration data in order to validate these 

models. 

     

D.     Patient modeling techniques 

 

  In regards to constructing patient models, the current 

literature does not address the magnitude of errors introduced 

by making the approximations described in section II.D. It is 

almost impossible to obtain a measured value to serve as a 

benchmark gold standard in order to validate patient modeling. 

In theory, a point dosimeter could be inserted into actual 

patients or cadavers, however, the dose variation issues 

described by Zhang et al.2 would make the measurements 

difficult to interpret. Instead, it would be informative to 

perform a sensitivity study in which the level of detail that 

goes into patient modeling is varied and the results are 

compared. Such studies will be performed with regards to the 

number of materials used in the model (a full set of ICRU-44 

anatomical tissues vs. air/soft tissue/bone) and the extent of 

the anatomy (full body vs. partial body models). The results 

will be used to determine the magnitude of the approximations 

that can made while still having confidence in the results when 

modeling a patient for dosimetry simulations.  

 

IV. DISCUSSION 

 

  The methods presented in this work were developed in order 

to address the limitations of common Monte Carlo MDCT 

simulation code validation techniques. A series of benchmark 

experiments were proposed that each address a particular 

component common to most simulation packages. Each 

experiment consists of a simulation description, all inputs 

necessary to perform the simulation except for that being 

tested, and the benchmark measurements or data that the 

simulation results should be compared with. The benchmark 

measurements consist of physically measured data wherever 

possible, however, some simulation data obtained with well-

validated codes are also used. The experiments were presented 

in a specific order so that the fundamental aspects of the code 

are validated first, followed by more detailed components. 

This approach to provides a standardized approach to 

validation that will allow for high confidence in individual 

simulation packages as well as the ability to directly compare 

different packages with each other in order to determine the 

optimal Monte Carlo MDCT simulation techniques. 
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Beam Shaper with Optimized Dose Utility for
Helical Cone-Beam CT

Thomas Köhler1, Bernhard Brendel1, and Roland Proksa1

Abstract— A beam shaper is proposed that modulates the
intensity of the x-ray beam as a function of the detector
aperture. Such a beam shaper can increase the SNR by 12%
if analytical reconstruction is used. In combination with it-
erative reconstruction, the beam shaper creates an insensi-
tivity to patient motion without introducing any heuristic
data weighting.

I. Introduction

Computerized tomography (CT) uses ionizing radiation
that harms people. Although the individual risk to cause
cancer with a single CT examination is small, the excessive
use of CT in diagnostic imaging may lead to a significant
total number of induced cancer cases. Recent studies and
estimates claim that the current use of CT in the US of
about 70 million examinations per year may cause several
thousands of cancer incidences [1, 2].

In all practical cases, the data acquired during a helical
scan are at least partially redundant. Proper incorporation
of redundant data in the framework of analytic reconstruc-
tion methods was one of the hot topics in CT reconstruc-
tion research in the beginning of this century. A number
of heuristic approximate methods [3–7] as well as heuris-
tic extensions of mathematically exact methods [8–10] have
been proposed.

All these analytic cone-beam reconstruction algorithms
perform weighting of redundant data, which is not optimal
from a statistical point of view. But there is a need to
trade-off dose utilization, level of remaining cone-beam ar-
tifacts, and the sensitivity to patient motion. These aspects
are discussed in some of the aforementioned papers [4,8,9].

Motion artifacts as well as other artifacts due to incon-
sistencies in the data can also show up in iterative recon-
struction methods. One way to mitigate these artifacts
is to introduce heuristically an aperture weighting function
that fades out the contribution of data near the edge of the
detector [11, 12]. This weighting increases the robustness
of the algorithm, but it necessarily increases noise since the
contribution of data are no longer in accordance with their
statistical significance.

The basic idea presented in this paper is to modulate
the incoming intensity of the x-ray beam such that the
weighting that is used during reconstruction fits to the sta-
tistical significance of the measured data, which leads to
an improved dose utilization. This can be achieved using
a proper beam shaper. The standard beam shaper used
in current medical CT scanner (aka bowtie filter) modu-
lates the intensity of the x-ray beam as a function of the
fan-angle [13], see Fig. 1. The goal of this beam shaper is
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to compensate roughly for the different path length of the
x-rays through the patients body. The proposed new beam
shaper introduces an additional modulation of the beam
intensity as function of the cone-angle.

Fig. 1. Illustration of a beam shaper located between focal spot and
patient.

II. Method

A. Analytic Reconstruction Algorithms

Consider the aperture weighted wedge reconstruction as
described in [8, 14] as a prototype for analytic reconstruc-
tions. For each object point to be reconstructed and each
projection value that contributes to this object point, all re-
dundant data are identified and a brute-force normalization
of the corresponding aperture weights is performed. This
procedure ensures that all available data are used during
reconstruction.

The statistically optimal way to average redundant data
di with variances var(di) is to use relative weights pro-
portional to 1/var(di). Since the weights used in analytic
reconstruction are strongly influenced by the need to avoid
cone-beam and motion artifacts, the goal is here to mod-
ulate the incoming intensity of the x-ray beam such that
the noise variance of the measured line-integrals matches
the statistical optimum.

The line integrals di are determined from the measured
intensity yi and the non-attenuated intensities, aka the
blank scan, bi according to

di = − log(yi/bi) . (1)

Using Gaussian error propagation, the relation var(yi) =
yi for Poisson distributed noise, and the assumption that
the variance of the blank scan bi can be neglected leads to
the relation

var(di) = 1/var(yi) , (2)

and the statistically best weights wi for the data are

wi ∝ 1/var(di) = var(yi) . (3)
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Since the data di, which are averaged during reconstruc-
tion, are considered to be redundant data, it is reasonable
to assume that all these data are approximately the same.
In other words, approximately the same fraction f of pho-
tons is absorbed along the corresponding lines, which leads
to the relation

wi ∝ var(yi) = yi ≈ fbi . (4)

Finally, note that up to here only relative weights were
used in the argumentation. Normalization is performed
during reconstruction and thus, the constant factor f can
be dropped. In conclusion, if a reconstruction algorithm
uses weights wi for a set of redundant data, then it is de-
sired that the non-attenuated beam intensity for the cor-
responding detector pixels accords with

bi ∝ wi . (5)

For aperture weighted wedge and most other helical
cone-beam CT reconstruction algorithms, the normaliza-
tion is performed for each voxel independently. Thus, the
final normalized weight for a particular detector sample
varies from object point to object point. However, the
non-normalized aperture weighting function has the gen-
eral feature of putting a larger weight to the central part
of the detector. This leads also to a larger mean normal-
ized weight for detector samples in the central part. Fig. 2
illustrates these mean normalized weights which are finally
used for the detector values for an example of a helical
scan with a pitch factor of 1 and a non-normalized aper-
ture weighting function that is trapezoidal with a plateau
width of 50%.

The desired spatial distribution of the non-attenuated
beam intensity according to Eq. 5 for the mean weights
can be easily achieved using a beam shaper. For an ideal
x-ray source that irradiates isotropically in all directions, a
beam shaper as illustrated in Fig. 3 results. The values on
the z-axis in Fig. 3 are the desired line integral values of the
beam shaper over the detector panel. Considering Teflon
as a material for the beam shaper, the required thickness to
achieve the maximum line integral value of approximately
2.5 is about 6 cm. Note that this beam shaper comes in
addition to the conventional beam shaper that modulates
the beam in fan direction.

Fig. 2. Mean normalized weights for each pixel on the detector used
during aperture weighted wedge reconstruction. The x-axis going to
the right corresponds to the fan-angle direction, the y-axis going to
the back corresponds to the cone-angle direction.

Fig. 3. Illustration of the thickness of a beam shaper that creates
the desired photon statistics. The z height of the surface indicates
the desired line-integral value of the beam shaper. The conventional
angular modulation of the beam shaper that will be maintained is
not shown.

B. Iterative Reconstruction Algorithms

As a prototype for iterative reconstruction a penalized
maximum likelihood (ML) is considered. Specifically, the
objective function

Ψ(x) = −L(x) + βR(x) (6)

is minimized, where x denotes the image, −L(x) the nega-
tive log-likelihood of the image and the roughness penalty
R(x) has the form

R(x) =
1

2

p
∑

j=1

∑

k∈Nj

wjkψ(∆jk) , (7)

where Nj represents the neighborhood of the voxel xj and
ψ is a symmetric and convex function. Furthermore, ∆jk =
xj −xk. The additional weights wjk are used to reduce the
penalty with increasing distance.

For the maximization of the objective function Ψ(x), the
ordered subset (OS) version of the separable paraboloid
surrogate (SPS) algorithm [15, 16] is considered. Let M

denote the number of subsets, x̂
(n)

j the image after n sub-

iterations, and l̂i = FP(x̂
(n)

j ) the forward projection of the

image x̂
(n)

j . Furthermore, let BPSm
(·) denote the back-

projection of all projection values within a subset Sm and
ωψ(t) = ψ̇(t)/t. Then the OS-SPS update step can be
written as

x̂
(n+1)

j = x̂
(n)

j +
MBPSm

(bie
−li) − β

∑

k∈Nj

wjkψ̇(∆jk)

BP(yiFP(1)) + 2β
∑

k∈Nj

wjkωψ(∆jk)

In [11] and [12] a heuristic aperture weighting was in-
troduced to iterative reconstruction in order to mitigate
artifacts that arise if iterative reconstruction is applied to
clinical data. Along the same line, the OS-SPS algorithm
is modified here to

x̂
(n+1)

j = x̂
(n)

j +
MBPSm

(aibie
−li) − β

∑

k∈Nj

wjkψ̇(∆jk)

BP(aiyiFP(1)) + 2β
∑

k∈Nj

wjkωψ(∆jk)

where the additional weights ai are weights which are 1 in
the center of the detector and smoothly approach 0 near
the upper and lower edge of the detector. This aperture
weighted algorithm is denoted as AW-OS-SPS.

Looking at the way these aperture weights enter the
update formula, it is clear that the same effect of down-
weighting certain detector values can be achieved using the
OS-SPS algorithm, if the blank scan is modulated accord-
ingly.
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III. Results

We simulated helical scans of a 32 row scanner with a
pitch factor of 1 and 1160 views per rotation. For the noise
analysis, a 330 mm water phantom was used. For the anal-
ysis of the sensitivity to motion, the forbild head phantom
was used, where an additional moving high contrast object
was inserted. Poisson distributed noise was added to the
projection data. For each beam shaper, i.e., the standard
beam shaper and the proposed beam shaper, the total num-
ber of photons in the beam after passing the beam shaper
was the same (1.5 · 1010 photons per projection). Taking
into account that the additional beam shaper does not in-
troduce a modulation in the fan-angle direction (i. e., the
mean number of photons is actually kept constant for each
detector column), it can be concluded that the dose is the
same for both beam shapers. As a consequence, the pho-
ton flux towards the central part of the detector is higher
if the proposed beam shaper is used, which will lead to the
nice additional effect that the SNR becomes more homoge-
neous. The same beam shaper (as illustrated in Fig. 3) is
used for the analysis of analytic and iterative reconstruc-
tions although for iterative reconstruction a simpler shape
would be sufficient since no optimization process is needed
to obtain the shape.

A. Noise Analysis

The noise level is determined spatially resolved by using
an ensemble of 10000 statistically independent noise real-
izations reconstructed with aperture weighted wedge. Re-
sults for the noise level (square root of the noise variance)
are shown in Fig. 5. The right image in Fig. 5 indicates the
increase of the SNR by the proposed method. Evidently,
the increase has a strong spatial dependence. Actually, it
appears that the increase is biggest in the areas where the
original method has the worst SNR. This can be under-
stood by the different illumination ranges of voxels in a
helical acquisition: The illumination range for the image
plane is shown in Fig. 4. The illumination range for voxels
in the left half of the image is shorter than on the right half,
resulting in a higher noise level in the left half. These vox-
els are illuminated only little more 180 degrees. In other
words, most of the time, these voxels are projected onto
the PI-window. The PI-window is – as visible in Fig. 2 –
the detector area where the mean data weights are largest
and where correspondingly the proposed method increases
the SNR on the projection. Therefore, the SNR gain is in
particular high for these voxels.

B. Motion Artifacts

Fig. 6 and 7 illustrate the effect of aperture weighting on
image quality in the presence of inconsistencies in the pro-
jection data due to motion for the wedge method (Fig. 6)
and for the penalized ML reconstruction (Fig. 7). The Hu-
ber penalty with δ = 0.2 HU is used as a penalty. The
left images in Fig. 6 and 7 show reconstruction results ob-
tained by using the standard beam shaper and SNR op-
timized data weighting (i.e., equal weighting in the wedge
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Fig. 4. Illumination map for the analyzed slice. Contour lines indi-
cate the illumination range in degrees. Regions of a short illumination
interval correspond to regions with higher noise level in the standard
acquisition (Fig. 5 left).

reconstruction and statistically correct weighting for the
ML reconstruction). Evidently, both reconstructions show
motion artifacts. The motion artifacts are less severe in
the ML reconstruction because motion artifacts are quickly
changing in z-direction and are therefore suppressed by the
roughness penalty. Additionally, the analytic reconstruc-
tion shows severe cone-beam artifacts. All these artifacts
are suppressed using aperture weighting (middle images in
Fig. 6 and 7). The artifacts are suppressed equally well
if the proposed beam shaper is used, which increases SNR
in analytic reconstruction as shown in the previous subsec-
tion, and increases also the SNR in iterative reconstruction
since all data are weighted statistically correct using the
OS-SPS algorithm. However, we are reluctant to make a
quantitative statement based on a single noise realization
due to the complicated noise properties of iterative recon-
struction with edge-preserving regularization [17].

IV. Summary

We proposed the general idea of beam shaping in accor-
dance with the mean weight with which the corresponding
detector pixel will contribute to the reconstructed images.
For a particular reconstruction method, namely the aper-
ture weighted wedge reconstruction, the proposed method
provides an SNR gain of 12% at the iso center and also
an average SNR gain of 12% over the full phantom extend
(i. e., within the central area of 330 mm diameter). In
consequence, the SNR of the conventional case can be pre-
served using 25% less dose. A second positive effect is that
the SNR becomes more symmetric.

The method can be readily applied to any other cone-
beam reconstruction method, e. g., the methods described
in [4–7, 9, 10]. It must be acknowledged that the optimal
shape depends on the helical pitch since the mean data
weighting depends on the pitch. However, we found in
further experiments, which are not shown here, that the
beam shaper that was optimized for a pitch of 1 leads to
a substantial SNR gain for a large range of pitches. Fur-
thermore, it should be noted that the possible dose savings
depend on the weighting scheme used in practice.

Additionally, the proposed beam shaper increases the
robustness of iterative reconstruction algorithms with re-
spect to motion without the introduction of heuristic data
weighting schemes.
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Fig. 5. Noise level in a 450 mm field of view obtained by an acquisition with the standard beam shaper (left) and the optimal beam shaper
(middle). The right image shows the SNR gain in %.

Fig. 6. Illustration of the effect of the proposed beam shaper on analytic reconstruction results in the presence of motion: Left: Acquisition
using a standard beam shaper and reconstruction with SNR optimal weighting. Middle: Acquisition using a standard beam shaper and
reconstruction with heuristic aperture weighting. Right: Acquisition using the same heuristic aperture weighting and a matched beam
shaper.

Fig. 7. Illustration of the effect of the proposed beam shaper on iterative reconstruction results in the presence of motion: Left: Acquisition
using a standard beam shaper and reconstruction with statistically correct data weighting (OS-SPS). Middle: Acquisition using a standard
beam shaper and reconstruction with heuristic aperture weighting (AW-OS-SPS). Right: Acquisition using the proposed beam shaper and
reconstruction with statistically correct data weighting (OS-SPS).
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Iterative correction of beam hardening
artifacts in CT

Katrien Van Slambrouck, Gert Van Gompel, Michel Defrise, K. Joost Batenburg,
Jan Sijbers and Johan Nuyts

We present a method to reduce beam hardening
artifacts in computed tomography. We started from
the linearisation pre-correction method of Van
Gompel et al. [1] and modified this model to
a least squares reconstruction method, MGRA.
This modification makes it more easy to interpret
the physical meaning of the reconstructed values.
MGRA, however, is computationally expensive and
therefore, we developed an acceleration step based
on a FBP density update, MFBP. All three methods
have been evaluated with simulations and phantom
measurements.

I. I NTRODUCTION

The polychromatic nature of the X-rays in com-
puted tomography (CT) causes beam hardening, which
results in cupping and streak artifacts. Several ap-
proaches have been applied to reduce these artifacts
with good results. In a first approach one uses statis-
tical reconstruction with a polychromatic model [2],
[3], [4]. The main drawback of such a model is the
high computation time. Another possibility is to use a
linearisation method. These methods are effective but
often there are restrictions. Some methods can only be
applied on a limited class of objects [5] or for limited
geometries [6]. Knowledge about material properties
is often required [7], [8] and also a calibration scan
can be necessary [9].

Recently, Van Gompel et al. [1] and Krumm et
al. [10] proposed linearisation methods for which
neither spectrum nor material properties need to be
known. The methods modify the measured sinogram
by adding the differences of a monochromatic and a
polychromatic simulation. In [1], the polychromatic
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sinogram is simulated using a parameterized polychro-
matic model that is fitted to the measured data. For
the monochromatic simulation a set of monochromatic
attenuation coefficients needs to be fitted based on the
simulated polychromatic sinogram.

We propose a modified version of the algorithm of
[1], which treats the problem as a reconstruction task
rather than as a sinogram pre-correction task. For that
purpose, the density in each voxel is introduced as an
extra parameter set. These densities and the material
characteristics are estimated from the data.

In section II the method of [1] is briefly explained
and the modified model is presented. Section III
describes the phantom we used to evaluate the model,
the results are given in section IV. Finally in section V
the results are discussed and the different algorithms
are compared.

II. M ODELS

The original model and the newly proposed al-
gorithms are all based on the hypothesis that there
are N different materials present in the object with
n = 1, ..., N and that each voxel can only contain
one material defined by a binary variablesn,j taking
the valuesn,j = 1 if voxel j containsn andsn,j = 0
otherwise.

A. Sinogram pre-correction method (GVG)

In the model of [1] the measured intensityImeas
p is

approximated by

Isimp (i) = I0

E
∑

e=1

IFe exp



−
N
∑

n=1

µn,e

∑

j

lijsn,j





(1)
wherei denotes the projection ray,E is the number of
energy bins that will be used to simulate the spectrum,
lij is the intersection length of rayi with pixel j
and IFe = Ie/I0 is the fraction of the total spectrum
corresponding to energy bine, with I0 =

∑

e Ie, the
intensity in absence of the object. The polychromatic
attenuation, estimated from the parameters{µ, IF , s}
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for ray i is then given byAsim
p (i) = ln

(

I0(i)
Isim
p

(i)

)

.
The corresponding estimate from the measurement is

Ameas
p (i) = ln

(

I0(i)
Imeas
p

(i) )

)

.

The measurement is corrected by iteratively adding
the difference between the simulated monochromatic
and polychromatic attenuation:

Acor,w
m (i) = Ameas

p (i)+
(

Asim,w
m (i)−Asim,w

p (i)
)

(2)

wherew is the iteration number andAcor,0
m = Ameas

p .
The monochromatic simulation is given by

Asim
m (i) =

N
∑

n=1

µref
n

∑

j

lijsn,j

with µref
n , the reference attenuation coefficient for

materialn. In each iteration,Acor,w
m is reconstructed

with filtered backprojection (FBP), and segmented
with thresholding to produce a new estimate ofs.
Then µ, IF and µref are estimated by minimizing
(3) and (4).

Φ(µ, IF , s) =
∑

i

(

ln

(

Imeas
p (i)

I0(i)

)

(3)

− ln

( E
∑

e=1

IFe exp

(

−

N
∑

n=1

µn,e

∑

j

lijsn,j

))

)2

Ψ(µ, s) =
∑

i

(

Asim
m (i)−Asim

p (i)

)2

=
∑

i

(

N
∑

n=1

µref
n

∑

j

lijsn,j (4)

− ln

( E
∑

e=1

IFe exp

(

−

N
∑

n=1

µn,e

∑

j

lijsn,j

))

)2

In [1] this method was applied on piecewise uni-
form objects with three materials. It was found that
the use of three energy bins is sufficient to make an
appropriate reconstruction. We will refer to this model
as the GVG model.

B. Modified model (MFBP and MGRA)

The major difference between the modified model
and GVG is that a densitydj is assigned to each voxel
in addition to the material indexsn,j so that the cost
function (3) becomes:

Φ̃(µ, IF ,d, s) =
∑

i

(

ln

(

Imeas
p (i)

I0(i)

)

(5)

− ln

( E
∑

e=1

IFe exp

(

−

N
∑

n=1

µn,e

∑

j

lijdjsn,j

))

)2

wheredj denotes the density in pixelj. To min-
imize this cost function we need to estimate the
attenuation coefficientsµ, the fractional energiesIF ,
the densityd and the segmentations. Based on the
estimated parameters we produce the following image
for visual inspection:

Rw = dw
∑

n

µmono,w
n swn (6)

whereµmono are monochromatic attenuation coeffi-
cients which can be estimated byµref as in GVG,
but also the mean attenuation can be chosen. For an
easy comparison we chooseµref . All parameters are
iteratively updated.

Algorithm

Each iteration of the modified algorithms consists
of the following steps:

1) Segmentation:The current image estimateRw is
segmented to update the material indicessn,j. This is
accomplished by a threshold method. The thresholds
are adapted in such a way that the new thresholds
lower the cost function (5). This is done by a gradient
descent algorithm.

2) Density:As a second step we update the density.
Two approaches for the density step are proposed.
The first one uses a gradient descent step ensuring
that Φ̃(µ, IF ,d, s) does not increase. The second
one is inspired by the iterative filtered-backprojection
method. A new image is obtained asR

′

w = Rw +
FBP(Ameas

p −Asim
p ) and the updated densities are then

directly obtained by setting

R
′

w = dw+1
N
∑

n=1

µmono,w
n sw+1

n .

In the following text the modified model with FBP
density update will be called the MFBP model. In case
a gradient descent update is used we will call it the
MGRA model. The gradient descent update contains a
projection and backprojection, and can be accelerated
with ordered subsets.

3) Attenuation and fractional energy:Updated at-
tenuation coefficients and fractional energies are cal-
culated by a gradient based minimization of the cost
function (5) with constant density and constant seg-
mentation.

4) Visualization: After estimation of the param-
eters, we calculate the monochromatic attenuation
coefficients and update the visualization (6).

In the first iteration we segment the uncorrected
FBP reconstruction,FBP(Ameas

p ), and we assume the
density to be equal to one everywhere. As was done in
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[1], we chose to use three energy bins and we accel-
erated the method by using a downsampled sinogram
together with a Gaussian filter till the following stop
condition is met:

Φ̃w−1 + Φ̃w

Φ̃w−3 + Φ̃w−2
> 0.9. (7)

Secondly, we iterate again till stop condition (7) but
without a filter. Finally, we upsample the result and
do two full size iterations.

III. M ATERIALS

We tested this new model on simulations and on
a phantom measurement. Here, only the phantom
measurements will be presented. Thebean phantom
(3cm x 1cm) is depicted in figure 1(a). It consists
of four materials: air, plexiglass, white spirit, and
water. The density of water is only slightly higher than
the density of plexiglass, the main material, whereas
the density of white spirit is substantially lower. The
algorithms were applied withN = 3, consequently,
the water part will not be segmented separately for
this phantom.

A Skyscan 1172µCT at 60 kV was used to obtain
the data. Hardware filtering and the beam hardening
correction option were turned off. The central slice of
the cone beam geometry was rebinned to a parallel
beam geometry. The parallel beam sinogram consists
of 300 views, equally spaced with an angular range
[0, π[ and 1000 radial samples. We used downsam-
pling factor 4 for the radial samples and 2 for the
views. The Gaussian filter had a standard deviation
of 1.5 pixels. FBP reconstruction is done using a
Hamming filter with cutoff frequency 0.5.

IV. RESULTS

Three algorithms are compared: the original GVG
pre-correction model, and the two proposed recon-
struction algorithms: the modified model with FBP
density update (MFBP) and the modified model with
the gradient density update (MGRA).

Figure 1 shows the uncorrected FBP reconstruction
of the bean phantom and the results obtained with
GVG, MFBP and MGRA. The evolution of the cost
function Φ̃(µ, IF ,d, s) (5) as a function of the itera-
tion number is shown in figure 2.

V. D ISCUSSION

The GVG pre-correction method is fast and ef-
fective. However, it is difficult to assign a physi-
cal meaning to the reconstructed values. Therefore,

Fig. 1. Bean phantom. Uncorrected FBP reconstruction (a),
correction with GVG (b), correction with MFBP (c) and correction
with MGRA (d).

Fig. 2. Evolution of the cost functioñΦ(µ, IF
,d, s) as a function

of the iteration number. GVG: black line, MFBP: blue line and
MGRA: red line.

we proposed two related iterative reconstruction al-
gorithms. The algorithms are based on an exten-
sion of the original cost functionΦ(µ, IF , s) (4) to
Φ̃(µ, IF ,d, s) (5). The main difference between both
is the introduction of a material density, which explic-
itly models the deviation from the segmented image.
In the original method, this deviation is incorporated
in an implicit way, by reconstructing the sum of the
measured sinogram and a correction term deduced
from the segmentation. In the MGRA method, each
operation in the iteration attempts to decrease the
cost function, and is guaranteed not to increase it. A
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monotonic decrease with effective convergence was
observed in all simulations. Unfortunately, the cost
function is not convex, and convergence to the global
maximum is not guaranteed.

For GVG and MFBP, the cost function does not
decrease systematically at every iteration, but effective
convergence was still observed. The value of the cost
function obtained with the reconstruction methods
(MGRA and MFBP) is usually lower than the one ob-
tained with the GVG method. It is difficult to compare
the corresponding reconstructions for two reasons.
First, the meaning of the reconstructed values is not
the same in the pre-correction and the reconstruction
methods. Second, the different algorithms seem to
converge to a local minimum as intended, but the local
minimum may be different. The difference in image
quality is then due to the anecdotal (image dependent)
convergence trajectory and not to fundamental differ-
ences between the methods. As illustrated in figure 1,
all three methods give similar results.

MGRA has the best theoretical foundation but it is
significantly slower than GVG and MFBP and hence
cannot be used in daily practice. Especially the density
update step takes a lot of computation time. Therefore,
we introduced the faster FBP update step in MFBP.
This change results in a strong acceleration. Mono-
tonic decrease of the cost functioñΦ(µ, IF ,d, s) is
no longer guaranteed, but good results were obtained
in simulations and the first experiment on real data
(figure 2). However, the MFBP correction method is
more sensitive to noise compared to GVG and MGRA.

Originally, Otsu [11] thresholding was used for
the segmentation in the GVG method. However, this
approach did not always produce a decrease of the
cost function. Here, the thresholds were determined
by minimizing the cost function, which improved
the convergence behavior. The disadvantage of this
method is the need to calculate several projections
while updating the segmentation. This is a time con-
suming job and often the changes to the segmentation
are small. This step could be strongly accelerated, by
using a projector that only projects the differences
between the old and new segmentations, as was done
in [12].

VI. CONCLUSION

The advantages of the modified algorithm are:

• The problem is defined as an explicit optimiza-
tion problem, which makes it easier to interpret
and analyze the reconstructed image. The recon-
structed values correspond to the parameters of
an (approximate) model, whereas in the original

method, it is more difficult to assign a physical
meaning to the reconstructed image values.

• The introduction of the density offers the possi-
bility to use this method for objects with mate-
rials which have small density differences. This
way, this important feature of the method of [1]
could be preserved.

The limitations of the proposed algorithm are

• The modified model MGRA needs more compu-
tation time, while the results are not very different
from those of the original algorithm.

• The MGRA method is too slow for routine use.
However, it is useful as a reference method when
evaluating the performance of the two related
approximation methods.
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Abstract—We present an iterative Fourier based 

reconstruction technique, which through the use of physical 

constraints, mathematical regularization, and the oversampling 

method, allows for accurate tomographic reconstruction from low 

flux and undersampled projection data. The method, termed 

Equally-Sloped Tomography, has previously been applied to 

parallel beam modalities such as electron and x-ray phase 

contrast tomography for the purpose of limited angle 

tomography. Here, we develop a generalization to fan beam 

geometry, and incorporate advanced regularization constraints, 

such as the Non-Local Means Total Variational model. 

Experimentally, we implement the method on the Siemens 

Sensation 64 scanner. Using a series of image quality phantoms, 

we evaluate the resulting image quality as a function of source 

flux; quantitative comparisons to current scanner reconstructions 

are made through the measurements of resolution, signal to noise 

ratio, and contrast to noise ratio. As the algorithm guides the 

reconstruction solution to the less noisy state in a manner strictly 

consistent with measured projections and constraints, we explore 

the possibility of radiation dose reduction through the reduction 

of flux. The experimental phantom studies indicate that 

comparable reconstructions, relative to current scanner 

reconstructions, may be achievable with 65-80% lower x-ray flux. 

 

I. INTRODUCTION 

UE to the tomographic requirement of multiple 

projections from multiple directions, transmission 

tomographic imaging techniques utilizing ionizing radiation, 

such as medical x-ray CT, are inherently high dose imaging 

techniques. Two general methods for reducing the radiation 

dose in tomographic modalities include undersampling the 

number of projections and or reducing the source flux per 

projection.  However under such conditions, the accuracy of 

the reconstruction is compromised due to the violation of the 

Nyquist sampling requirement when the projections are 
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undersampled, and the presence of heavy noise when the 

source flux is significantly reduced [1, 2]. The development of 

more sophisticated reconstruction algorithms capable of 

solving for a portion of the data and guiding the solution to a 

less noisy state constitute one method for dose reduction [3, 4].  

Recent simulation and experimental results in electron 

tomography and synchrotron x-ray CT have demonstrated that 

the technique of Equally-Sloped Tomography (EST) , an exact 

iterative Fourier based reconstruction algorithm, significantly 

outperforms Filtered Back Projection (FBP) and algebraic 

reconstruction technique, and is capable of producing 

comparable reconstructions with 60-70% fewer projections [5-

8]. Here, we generalize and implement the method on  a 

medical CT scanner, and subsequently study the possibility of 

radiation dose reduction through the reduction of flux in 

particular. 

II. METHODS 

A. Fourier Formulation 

 The Fourier slice theorem, which equates the 1D Fourier 

transform of a projection to a slice of the 2D Fourier transform 

of the object at the corresponding angle, forms the foundation 

of tomographic imaging. While the theorem is conceptually 

elegant, its direct computerized application is problematic as 

the aggregation of projection data forms a polar data set in 

frequency space, while conventional FFT algorithms operate 

on a Cartesian point set, leading to degrading Fourier space 

interpolation for direct implementation [1, 2]. Although it is 

believed that no direct exact fast Fourier transform algorithm 

can be constructed between the polar and Cartesian grids, 

recently the existence of a direct exact fast Fourier transform 

algorithm and its inverse between an oversampled pseudopolar 

grid and the Cartesian grid, termed as the Pseudopolar Fast 

Fourier Transform (PPFFT), has been proved [9, 10]. As 

depicted in Fig. 1., for a N N× Cartesian grid, the 

corresponding pseudopolar grid is defined by a set of 

2N lines, each line consisting of 2N grid points mapped out 

on N concentric squares, with each successive line changing 

by an equal slope increment of as opposed to a fixed equal 

angled increment as in the polar grid. Unlike the polar grid, the 

distance between sampling points on the individual 2N lines of 

the pseudopolar grid vary from line to line. The fractional 

Fourier transform (FrFT) can be used to vary the output 
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sampling distance of the Fourier transform. The 1D FrFT is 

defined as, 
1

exp( / ),      - ,
n

l k

k n

f F f i kl n n l nα α π
−

=−

= = − ≤ ≤∑F  

which is equivalent to the standard discrete Fourier transform 

but with a factor of α  in the exponent [11]; the FrFT reduces 

to the forward Fourier transform when 1α =  and to the 

inverse Fourier transform when 1α = − . Through the use of 

the FrFT, an analog of the Fourier Slice Theorem can be 

reformulated for the pseudoplar grid to be: the 1D FrFT of a 

projection at an angle θ  is equivalent to a slice of the 2D 

pseudopolar Fourier transform of the image, ( )f r , at the same 

angle θ  in the frequency domain. 

B. Iterative Reconstruction Algorithm 

Since the objective is to limit the flux and or the number of 

projections for the purposes of limiting the radiation dose, an 

iterative algorithm is necessary to recover the resulting missing 

projection data and guide the solution to a less noisy state 

through regularization. In a manner similar to the 

oversampling Fourier algorithm that was used to solve the 

phase problem in diffraction imaging [12, 13], the 

reconstruction algorithm we introduce consists of iterations 

between object and Fourier space, with constraints enforced in 

each iteration. The parallel beam formulation is described first, 

as the fan beam formulation in section II.C is based upon it. 

For parallel modalities, a characteristic of the EST 

methodology is that, if projections are acquired at equal slope 

intervals, they can be directly mapped onto the pseudopolar 

grid, thereby eliminating all interpolations in tomographic 

reconstruction as first suggested by [7].  

The iterative algorithm is initialized by padding the 

projections, followed by the appropriate FrFFT to map the 

projection on the corresponding line on the oversampled 

pseudopolar grid [7]; the oversampling results in the sample in 

the object domain to be surrounded by a region of 

mathematical zeros, termed the support, which provide 

additional constraints that aid guide the iterative process. The 

algorithm is initiated by placing the measured projection data 

onto the Fourier domain using the FrFT.  The jth iteration of 

the algorithm can then be considered in four steps as depicted 

in Fig. 1b. First, the PPFFT
-1

 is applied to the Fourier space 

data to obtain an object space image
'
( )jf r . Second, a new 

object ( )jf r  is obtained through the enforcement of three 

constraints which include support, positivity, and 

regularization of the object. In this study, we utilized the Non-

Local Means Total Variational model, which represents a 

relatively recent improvement in edge preserving TV 

optimization [14-16]. Third, the forward PPFFT is applied to 

the modified image to obtain set of calculated slices in the 

Fourier domain. Fourth, the Fourier space data is updated with 

the measured slices.  The iterations are monitored by an error 

function, and the algorithm is automatically terminated if the 

error does not reach a minimum after a set number of 

iterations. The computation time for each iteration is 

comparable to a FBP reconstruction. With respect to this, we 

note that recently a gradient descent version of the EST 

algorithm, which will be implemented in future studies, has 

been developed that reduces the computation time for each 

iteration by up to 70% [17]. 

C. Experimental Implementation 

The method was experimentally implemented on the 

Siemens Somatom Sensation 64 scanner. As the scanner 

employs fan beam geometry, a rebinning step was performed 

prior to initiating the algorithm in section II.B in order to 

transform the fan beam projections to a set of parallel 

projections along equally-sloped lines of the pseudopolar gird 

[18-20]. Since the scanner utilizes a flying focal spot 

technology to increase detector sampling, the raw projections 

were interlaced and corrected prior to rebinning [21]. All scans 

were performed under axial mode with the tube current 

modulation off and the voltage set to 120 kVp.  Image quality 

was determined using the ACR CT Accreditation Phantom and 

Siemens EMMA phantom as a function of photon flux by 

systematically lowering the mAs from a maximum of 583 

mAs. All scanner (FBP) reconstructions were performed with 

Spline interpolation for the back projection process; 

comparison to the multitude of other filters for FBP is beyond 

the scope of this paper, and accordingly the standard 

uncropped ramp filter in order to not degrade the resolution 

[20].  

III. RESULTS AND DISCUSSION 

 The FBP and EST reconstructions for material and 

resolution modules of the ACR phantom are presented in Fig. 

2. Starting at the maximum flux setting of 583 mAs, the signal 

to noise ratio (SNR) of the FBP in the body of the phantom is 

observed to degrade from a value of 61.6 in Fig. 2a to a value 

of 18.8 in Fig 2b, when the flux is reduced to 50 mAs; the EST 

reconstruction (terminated after 21 iterations) at 50 mAs, as 

shown in Fig 2c, results in a SNR of 62.3 in the same region. 

To assess the effect of the method on resolution, the resolution 

module of the ACR Phantom was reconstructed for FBP at 

583, FBP at 50 mAs and EST at 50 mAs, as shown in Fig. 3c-

e. The results indicate no degradation of high contrast 

resolution which may be a concern when implementing 

regularized algorithms. 

To evaluate the effect of the method on objects of varying 

contrast and size, reconstructions were performed on the 

EMMA phantom which contains a set of cylindrical inserts 

with diameters .3 cm, .5 cm, .7 cm, 1 cm, 2 cm, and with 

varying normalized electron density relative to solid water of 

0.001, 1.48, 1.09, 1.17, which we refer to as Regions I-IV, 

respectively. Table 1 summarizes the SNR for the each region 

and respective reconstruction method, while Table 2 

summarizes the Contrast to Noise Ratio (CNR) relative to the 

body. The results indicate that the SNR of the 50 mAs EST 

reconstruction (terminated after 41 iterations) exceeds both the 

50 mAs and 583 mAs FBP by a mean factor of 3.1 and 1.3, 

respectively, and the CNR of the low EST reconstruction 

exceeds that of the FBP reconstruction by a factor of 2.8 and 
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1.2, respectively. However, it is noed that the visibility lowest 

contrast rod with the smallest diameter of .3 cm is arguable for 

the low dose reconstructions.  

The analysis indicates that the technique results in 

comparable or higher values in a variety of image quality 

parameters relative to the FBP reconstruction with greater than 

a factor of 10 times the dose.  These results are relative to the 

scanner reconstruction at maximum allowable flux of 583 mAs 

which is greater than the typical scan protocol. Due to 

complexities of quantifying image quality, especially when 

considering clinically relevance, it is difficult to determine a 

dose reduction factor. With that said, if one assumes that a 

typical scan is between 150-250 mAs, then comparable 

reconstructions may be possible with 65-80% lower dose using 

the methodology.  
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Table 1 Signal to Noise Ratio (Arb. Units) 

Region I Region II Region III Region IV FBP 583 mAs 1.13 115.16 62.05 66.20 

FBP 50 mAs 0.66 58.23 34.92 35.40 

EST 50 mAs 2.39 156.66 112.35 115.19 

 

 

Table 2 Contrast to Noise Ratio (Arb. Units) 

Region I Region II Region III Region IV 

FBP 583 mAs 58.61 53.17 5.37 8.05 

FBP 50 mAs 30.86 24.57 2.50 4.02 

EST 50 mAs 90.18 68.41 7.63 11.89 

 

 

Figures: 

            
(a)                                                                                         (b)                                                                                     

Fig. 1 (a) Graphical relationship between the oversampled pseudo-polar and Cartesian grids.  (b) Schematic of the 

iterative algorithm.  
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Fig. 3 (a) FBP reconstructions at 583 mAs (b) FBP reconstructions at 50 mAs  (c) EST reconstruction at 50 mAs 
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Fig. 2 (a) FBP reconstructions at 583 mAs (b) FBP reconstructions at 50 mAs  (c) EST reconstruction at 50 mAs (d) 

FBP reconstructions at 583 mAs (e) FBP reconstructions at 50 mAs  (f) EST reconstruction at 50 mAs  

(d) (e) (f) 

EST 
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2D X-Ray CT Reconstruction Based On TV
Minimization And Blob Representation

Han WANG ∗ Laurent DESBAT† Samuel LEGOUPIL‡

Abstract—The rotationally symmetric function (blob) is
an ideal alternative to pixel representation of image. In
this paper we present a 2D strip-integral projector based
on blob which is independent to grid and blob’s radius.
This projector can be implemented on parallel architecture
like NVIDIA GPU. A reconstruction algorithm by TV
minimization is also developed for blob represented image.
Some preliminary numerical experiences of this algorithm
on fixed regular grid are presented.

I. INTRODUCTION

The X-Ray generation and detection system, as in
many inverse problems, can be modeled as an application
from the ”continuous object space” to the ”discrete data
space”. In fact, the physical object illuminated by X-Ray
is a function supported on a continuous compact spatial
region. Due to detector’s limited resolution, the sinogram
data is discretized in form of a finite dimensional vec-
tor which contains consequently aliasing introduced in
angular direction (for 2D). Therefore the discretization
of sinogram inherently limits the resolution of the final
reconstructed image. For an object f(·) : IR2 → IR
supported on a continuous and compact spatial region
of IR2, an efficient way to handle this is to represent the
real object as an interpolation with a family of translated
local basis :

f(x) =
∑
j

fjΦ(x− xj), for j = 1 . . . N (1)

where Φ(·) : IR2 → IR is compactly supported basis
function and fj ∈ IR is the interpolation coefficient.
The X-Ray transform on f taken at direction θ ∈ S1

is defined as :

Pθf(y) = Pf(y, θ)
4
=

∫
IR
f(y+tθ)dt, for y ∈ θ⊥ (2)

and by linearity :

Pθf(y) =
∑
j

fjPθΦ(y − (xj − xθj)) (3)
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‡ Email : samuel.legoupil@cea.fr
∗ ‡ CEA Saclay, Bat.516, PC 72, 91191 Gif-Sur-Yvette, France.
Manuscript received May 21, 2010; revised May 21, 2010.

where xθj = 〈xj , θ〉θ is the projection of xj onto
θ (〈, 〉 denotes the scalar product). We use in this
paper the definition of Fourier transform : f̂(ω)

4
=∫

R f(x) exp(−2πixω)dx. Taking Fourier transform on
Pθf(·) and following the projection-slice theorem
f̂(ω) = P̂θf(ω) for ω ∈ θ⊥, we obtain :

f̂(ω) = Φ̂(ω)
∑
j

fj exp(−2πi〈ω, xj − xθj〉) (4)

The aliasing contained in the sum at right hand side
of (4) is attenuated if Φ has a fast decreasing rate in
frequential space. From this point of view, the pixel
basis, which is the de facto standard of representation
basis used by most of the state-of-art algorithms, is not
an optimal choice for image representation due to the
slow decreasing rate of Sinc function.

A. Blob function

The generalized Kaisser window function(also called
Lewitt-blob) [3] has many advantages like, beside its
rotation invariance, the fast decreasing rate in frequential
plan and the analytical expression of X-Ray transform.
These make it an ideal alternative to the pixel basis.
The major default of Lewitt-blob function is that it’s not
positive-definite which prevents it to perfectly represent
an homogeneous image [1]. However we can minimize
the error by carefully choosing the parameters of blob
controlling its shape [6]. In general the reconstruction
based on blob is more smooth than that of pixel due
to the low-pass filter character of blob function. In this
paper, we address the issue of edge-preserving recon-
struction based on blob representation.

We note in the following A the X-Ray projection
operator. Depending on the projection geometry, A could
be (in 2D) a parallel-beam or fan-beam projection. As
shown in (3), the sinogram Af is determined by the
contribution of each AΦ(· − xj), and followed by a
sampling processes to yield finally the finite dimensional
sinogram vector g ∈ IRM . This indicates us to write the
forward problem in a matrix-vector form :

gi =

N∑
j=1

Aijfj , for i = 1 . . .M (5)
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with Aij the value of AΦ(· − xj)(y) taken at i-th
sampling point. We consider A as a linear map operating
from IRN to IRM , and the back-projector as transpose
matrix A>.

B. Edge-preserving reconstruction

The algorithms of reconstruction by edge-preserving
priors, particularly that of Total Variation(TV) minimiza-
tion, have been shown to be very efficient on images with
homogeneous regions. The total variation of a Bounded
Variation function f is calculated as :

TV (f) =

∫
Ω
‖∇f(x)‖dx (6)

where Ω is the support region of f . It corresponds
effectively to the length of all level set contour of image
f . Obviously, a piecewise constant image’s TV norm is
small since it concentrates only on the contour of image.
In most of numerical implementations, a discrete version
of TV based on the differences between pixels is used.
For an image represented by blob basis, the evaluation
of (6) can be done in a non discrete manner, as presented
in section III of this paper.

The paper is organized as follows : in section II we
present a projector and back-projector based on blob
representation of image and can be easily implemented
on parallel architecture like NVIDIA GPU. Some recon-
struction results by minimization of TV norm based on
this new projector is given in section III.

II. BLOB BASED STRIP-INTEGRAL PROJECTOR AND

BACK-PROJECTOR

We can associate a scalar profile function φ(·) to
spherical symmetric basis function Φ(·) by Φ(x) =
φ(‖x‖). The X-Ray transform is then reduced to the Abel
transform :

PθΦ(y) = 2

∫ +∞

‖y‖
φ(t)

t√
t2 − ‖y‖2

dt
4
= Aφ(‖y‖) (7)

and by (3):

Pθf(y) =
∑
j

fjAφ(‖y − (xj − xθj)‖) (8)

As shown in Fig. 1, a simple implementation consists
in tracing a line SD and evaluate (8) at corresponding
~θ = SD/‖SD‖ and y = 〈Sxj , ~θ〉~θ − Sxj . Taking
D = (Di−1 +Di)/2, this becomes the so called Siddon
ray-driven projector and equals to sampling Pθf(y) at
frequency 1/∆d in parallel beam geometry, with ∆d the
size of detector pixel.

A more realistic model is to calculate the strip-integral
on a curve Γ ⊂ IR2 formed by detector pixel area

between two pixel borders Di−1 and Di. This strip-
integral acts as a low-pass filter and reduces the aliasing
artefacts introduced by the sampling procedure in Siddon
projector. Parameterizing Γ by D : IR ⊃ I → Γ, the
strip-integral reads, by definition of curve integration :∫

Γ
Pθf(y)|dγ| =

∫
I
Pθf(y) ‖D′(l)‖dl (9)

where |dγ| denotes the length of integration element dγ,
and θ, y depend on D(l). For a 1D linear detector we
have D(l) = D0 + l~d with ~d the unitary vector from one
extremity of detector to the other, and ‖D′(l)‖ = 1. In
case of parallel beam geometry, the strip-integral (9) is
simplified to :∫ i∆d

(i−1)∆d

Pθf(y)dl =
∑
j

fj

∫
Bij

Aφ(|l|)dl (10)

where Bij denotes the interval defined by the distance
from the blob center xj to parallel rays {SD,D ∈ Γ}
: Bij = [(i − 1)∆d, i∆d] − 〈S0xj , ~d〉. See Fig 1. The
integral in the right hand of (10) can be retrieved by
looking up the one dimensional pre-calculated table
T (t) =

∫ t
−∞Aφ(|s|)ds for upper and lower borders of

Bij then make the difference.

O

xj

~dD0

S0 y

S ~θ

Di

Di+1
Γ

Fig. 1. Contribution of blob centered at xj to detector [Di, Di+1] in
parallel beam is the strip-integral of the red region and depends only
on the distance from xj to SDi and SDi+1. This makes it easily
evaluated by looking up pre-calculated one dimensional table T (t).

The situation for fan beam geometry is shown in Fig.
2. One has a similar expression as (10) but with the
integrand of strip integral depending on the detector pixel
area Γ. One solution (already proposed in [4]) is to
calculate the same integral as (10), which is equivalent
to integrate the blob function on the red region and
independent to detector curve. This allows us to use the
same pre-integrated table T (t) as in parallel beam case
and unify the form of 2D projector for both parallel and
fan beam.
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O

xj

~dD0

S

y

Di

Di+1

Γ

Fig. 2. In fan beam, the strip-integral is calculated as the integration
of blob function on red region. As in parallel beam case, this depends
only on the distance from xj to SDi and SDi+1, and the same look-
up table technique applies.

The back-projector is defined by :

(A>g)j =
∑
i

gi

∫
Bij

Aφ(|l|)dl (11)

from where we see that the technique presented above
applies identically for on the back-projector.

A. Dilated blob and irregular grid

We can control the radius of blob function Φ by a
dilating parameter. Let Φλ(x)

4
= λ−1Φ(x/λ), λ > 0 be

the dilated blob and φλ(‖x‖) 4
= λ−1φ(‖x‖/λ) its profile

function, then Aφλ(‖y‖) = Aφ(‖y‖/λ) and :∫
Bij

Aφλ(|l|)dl = λ

∫
Bij/λ

Aφ(|l|)dl (12)

Therefore the same pre-integrated table T (t) can be used
to calculate the strip-integral of blobs with variant radius.
This is useful in the projection of a image representation
model as :

f(x) =
∑
j

fjΦλj
(x− xj) (13)

where Φλj
(x−xj) is a blob centered at xj and dilated by

λj . Finally we remark that the looking-up table method
proposed here is independant to the choice of xj , in other
words, the same projector can be applied on any kind of
grid.

B. Implementation on parallel architecture

The implementation of projector A can take the form
of either an on-the-fly operator or a pre-calculated sparse
matrix. The storage of sparse matrix usually becomes

prohibited for high dimension data, while the on-the-
fly operator is generally very slow if implemented in a
sequential way.

It’s very easy to parallelize the projection method
discussed above. One can allocate to each thread either
a blob function Φ(·−xj) and evaluate the strip-integrals
weighted by fj on influenced detector pixels, or a detec-
tor pixel area Γ = [Di, Di+1] and evaluate the expression
(10) on it. Since we don’t suppose any structure on the
blob grid here, for the ray-driven projector one needs to
gather first the index of blobs contributing to a given
ray, which could be a lengthy operation. While for
the blob-driven projector, one must manage the threads
concurrency of writing on the same memory address. Our
first experiences show that the blob-driven projector is
conceptually easier than ray-driven projector, and that the
threads concurrency can be handled correctly by atomic
operations. Table I shows the acceleration achieved on a
NVIDIA GeForce 8600M card for blob-driven projector
(left) and back-projector (right) of fan beam geometry at
3 image size (number of blobs) and 3 projection sets : 64,
96, 128 projections. The reference CPU is Intel Core Duo
T7500 2.20GHz. Although the GPU platform that we

1282 2562 5122

64 20.8 20.3 18.2
96 24.4 24.2 20.9
128 26.1 25.9 21.7

1282 2562 5122

35.8 35.5 33.0
33.4 32.5 30.5
36.1 35.5 32.4

TABLE I
ACCELERATION OF GPU AGAINST CPU

used supports only 32bit float operations, the numerical
difference between CPU and GPU implementations is
very small, about 10−5 for projector and 10−6 for back-
projector.

III. TOTAL VARIATION MINIMIZATION

Consider now f sampled on a regular cartesian grid
G = ∆ZZ2, with sampling step length ∆ > 0. When
1/∆ is sufficiently high, the total variation of f is well
approximated by :

TV (f) '
∑
yk∈G
‖∇f(yk)‖2∆2 (14)

The question here is how to efficiently calculate the
gradient ∇f(x) = (∂1f(x), ∂2f(x))> on G. We can use
the following relation of Fourier transform :

∂̂1f(ω) = (−2πiω1)f̂(ω), and (15)

∂̂2f(ω) = (−2πiω2)f̂(ω) (16)
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where f̂(ω) = Φ̂(ω)
∑

j fj exp(−2πi〈xj , ω〉). We define
the dual cartesian grid G′ = ∆−1([−1/2, 1/2)2∩ZZ2/K),
with integer K > 0 and evaluate (15) on G′. Depending
on the grid of blob representation, the sum involved in
f̂(ω) may be a non uniform Fourier transform and it
can be treated efficiently by the fast transform technique
like [2], while the Fourier transform of blob Φ̂(ω)
can be precalculated on G′. Therefore one obtains the
frequency value ∂̂1f(ω) on G′ with low complexity
operations. Now we only need to take the inverse FFT
of (K∆2)−1∂̂1f(ω) evaluated on G′ to get ∂1f(x) on
G. The same operations apply for ∂2f(x).

We note the operations presented above by JG :
IRN → IR2×|G| : it’s the operator yielding the value
(with a precision dertermined by K) of∇f(x) on G. It is
linear on the vector ~f formed by {fj}, and (JG ~f)k ∈ IR2

for k = 1 . . . |G|. We can formulate the TV minimization
problem as :

min
~f

|G|∑
k=1

‖(JG ~f)k‖ s.t. A~f = b (17)

with A here the projector proposed in section II and b
is the noiseless sinogram. The algorithm TVAL3 [5] is
used in this paper to solve the problem (17). The final
image represented by blobs is then obtained from ~f by
(1).

A. Numerical experiences

We present now some reconstruction results based on
(17). A standard 128×128 Shepp-logan phantom’s pixel
values are taken as the blobs coefficients (therefore the
true image is the one represented by these blobs) and
the blobs with standard radius are placed on a regular
cartesian grid. The object is fitted into a square of
size 25 × 25 cm centered at origin, and the distances
from rotation center to source and detector are 80 cm
and 40 cm respectively. We’ve simulated a fan-beam
noiseless acquisition of 16 projections equally distributed
on [0, π) by applying the same blob-driven projector on
the blob coefficients. The gain of TV reconstruction by
(17) compared to the least square reconstruction is shown
in Fig. 3. The horizontal central profile is shown in Fig.
4.

IV. DISCUSSION

We have presented a parallelizable strip-integral pro-
jector based on blob functions and a related TV mini-
mization algorithm. The independence of this projector
to the grid and blob radius brings the possibility of
modification of blob’s position and radius during the

(a) (b)

Fig. 3. Least square and TV reconstructions from 16 projections
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0.0
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1.0

1.5

2.0
Central profile

Phantom
TV

Fig. 4. Central profile of TV reconstruction from 16 projections

iterations. In fact, the choice of blob position xj , radius
λj and weight fj can be done automatically by the
reconstruction algorithm : one needs to fix the number
of blobs and minimize (17) with respect to all these pa-
rameters. We will investigate the possibilities in another
publication.
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Effect of Modeling Anode Size and Angulation in
Fully Iterative CT Reconstruction

Kevin J. Little* and Patrick J. La Rivière

Abstract—The small beveled angle in the rotating anode of
an X-ray tube may potentially result in the loss of peripheral
resolution in computed tomography (CT) due to the differences
in the projection of the focal spot at the central and peripheral
detectors. Many recent studies of iterative reconstruction for CT
work with logged data and a lineaerized imaging model. In the
logged domain of line integrals, we model the finite detector size
and anode angle using sourcelets, detectorlets, and numerical
integration based on Kaiser-Bessel basis functions. Utilizing a
novel fully iterative reconstruction algorithm, we use a phantom
containing an array of point impulses in order to compare the
effect of modeling a finite source and anode angulation in the
logged data domain. Provisionally, we find that there is not a
significant difference in image resolution when reconstructing
with a finite source model versus a point source model.

Index Terms—Computed tomography (CT), iterative recon-
struction

I. I NTRODUCTION

A rotating anode made of a high-atomic-number material
such as tungsten is usually a core component of modern

X-ray tubes. Incident electrons, which are accelerated across
a vacuum by a potential difference after they are boiled off
the tube’s cathode, impinge on the anode and result in X-
rays due to bremsstrahlung radiative losses and the emission
of characteristic X-rays. Nonradiative (heat) energy is also
generated in large amounts in these interactions, and the
rotation of the anode allows for the dissipation of this energy
over a larger area [1], [2].

In order to dissipate this nonradiative energy over an even
greater area, the edge of the anode known as the focal track is
generally a beveled edge with a small angle (typically 5◦−7◦

in a computed tomography (CT) tube). While a comparatively
larger area of the focal track is exposed to electrons, the small
size of the effective projected focal spot is maintained due to
the line-focus principle, which is illustrated in Fig. 1 [1], [2].

The line-focus principle works well for the central detector
channels, but not all detectors see the same projection of the
rectangular, angled focal spot. Due to the anode angulation, a
more peripheral detector sees a larger effective focal spot size
than a central detector [2]. This anode angle effect has been
shown to degrade peripheral resolution in some cases, and
sinogram-domain methods for compensating for the resulting
blurring have been proposed [3]. In most analytic and iterative
CT reconstruction algorithms, the anode is modeled as a point
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h/tan α
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X−ray beam 

Crossectional cut through rotating anode

Figure 1. Illustration of the line-focus principle employed in X-ray anodes.
Due to the beveled edge of the focal track, a relatively large area of the anode
can be exposed by the electron beam (traveling in from the right in this figure)
while the projected cross section of the X-ray beam (traveling downward in
this figure) remains relatively small.

source. It is not known whether modeling a finite, angled
anode as opposed to a point source will have a significant
effect on image resolution and noise properties.

Many recent investigations of iterative reconstruction for CT
work with logged data and a linearized imaging model [4], [5].
Along with an assumption of a Gaussian noise model in the
log domain, this allows for the use of a quadratic objective
function and avoids evaluating exponentials. However, any
linear modeling of finite source and detector effects in the log
domain is necessarily approximate, since these finite apertures
lead to linear averaging in the transmitted intensity domain,
not in the logged domain of line integrals.

Our goal in this paper is to evaluate this approximation,
i.e. to assess whether linear modeling of the anode size and
angulation in the logged data domain can indeed lead to
improved image quality. Focusing on the single-slice circular
fanbeam case for the purpose of simpler calculations, we
perform numerical integration using Kaiser-Bessel spherically
symmetric basis functions in order to compute a system matrix
that takes the finite, angled anode into account for a linearized
imaging system. Using the Radonis CT simulation package
(Philips Research and Development, Hamburg, Germany) in
order to generate realistic, exponentially attenuated forward
projection data for a finite, angled anode, we then perform
fully iterative image reconstruction using a modified version
of the image space reconstruction algorithm (ISRA) that has
been revised to include a roughness penalty (smoothing). A
provisional conclusion about the effects of anode modeling
on fully iterative image reconstruction is made.
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II. M ETHODS

A. System model

In order to take the finite detector size into account, we
divide the finite anode into a grid of sourcelets and each
detector into a grid of detectorlets [6]. A diagram showing
fanbeam CT measurement geometry, including sourcelets and
detectorlets, is shown in Fig. 2. We want to efficiently calculate
the average line integral from each of the sourcelets to each
of the detectorlets, so we use the spherical Kaiser-Bessel
basis function described in Ref. [7] and implemented for CT
reconstruction in Ref. [4]. This basis is useful because the line
integral through each volume element “blob” is based only on
the distance of the line integral from the center of the volume
element. While the implementation of the “blob” model in
Ref. [4] assumed finite detectors, it assumed an ideal point
source. We modify the system model in Ref. [4] to include a
finite source, and we also do not use an interpolated method
of integration.

center 

line
attenuation 

Isocenter

Height
sourcelets 

Width sourcelets

Detectorlets

(0,0)

γ

Focal spot 
center
(0,f)

f

d

Example 
non−principal
attenuation line

Detector channel

Principal

Figure 2. Geometry, including sourcelets and detectorlets,of a fanbeam CT
measurement for a single projection view.

We represent the continuous distribution,f(~x), of the ab-
sorption coefficient at spatial position~x as a sum of basis
functionsf̃(~x) such that

f̃(~x) =

N
∑

j=1

cjgb(~x− ~xj), (1)

whereg is the grid increment between each of theN volume
elements,cj is the weight given to each volume element,
and b(~r) represents the Kaiser-Bessel basis function at each
volume element. The Kaiser-Bessel function is given by [7]

bm,a,α (r) =
{

(√
1−(r/a)2

)

m

Im
(

α
√

1−(r/a)2
)

Im(α) , 0 ≤ r ≤ a

0, otherwise
(2)

whereIm represents the modified Bessel function of orderm,
a is the radius of the basis function,α is a parameter modifying
the blob shape, andr is the radial distance from center of the
volume element. A single line integralL [~xd, ~xs, ~xj ] through
a single volume element will be given by

L [~xd, ~xs, ~xj ] =

∫ 1

0

b [~xs + l (~xd − ~xs)− ~xj ] dl. (3)

where~xd is a given detectorlet location,~xs is a given sourcelet
location, and~xj is the center location of a volume element.
The line integral in terms of the perpendicular distancew from
the center of the volume element to the line integral can be
written as [4]

Lm,a,α [~xd, ~xs, ~xj ] =

Lm,a,α (wdsj) = Lm,a,α (w) =

2

∫ (a2
−w2)1/2

0

bm,a,α

[

(

w2 + t2
)1/2

]

dt |w| ≤ a (4)

where

wdsj = w =
√

‖~xj − ~xs‖
2
− {(~xj − ~xs) · [~xd − ~xs] / ‖~xd − ~xs‖}

2
.

The integral above is known exactly and is solved in Ref. [7].
Eq. (4) becomes

Lm,a,α (w) =

a

Im (α)

(

2π

α

)
1

2

[
√

1− (w/a)
2

]m+ 1

2

.

×Im+ 1

2

[

α

√

1− (w/a)
2

]

(5)

For a given volume elementj and detectori, we want to
compute the elementaij for system matrixA that represents
the contribution of the given volume element to the recorded
output of the given detector such that

~y = A~c, (6)

where~y is the data vector comprised of theM measurements
of all the detectors at all rotation angles and and~c is the
array ofN weightscj in Eq. (1). We may find the average
line integral over all detectorlets and sourcelets (an effective
numerical integration) contributing to a system matrix element
aij by calculating

aij =
1

DS

D
∑

d=1

S
∑

s=1

L (wdsj) , (7)

whereD is the total number of detectorlets andS is the total
number of sourcelets. By making the statement in Eq. (7), we
assume that we are working with a linearized imaging equation
and linearized data.

B. Iterative reconstruction algorithm

We wish to solve Eq. (6) for theN × 1 vector of “blob”
weights ~c using a fully iterative reconstruction method. In
order to achieve this, we seek to minimize the penalized least
squares (PLS) objective function given by
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ΦPLS(~̃c ~; y) ≡ LPLS
(

~̃c; ~y
)

+ βR
(

~̃c
)

, (8)

where

L
PLS

(

~̃c; ~y
)

=

M
∑

i=1



yi −

N
∑

j=1

aij c̃j





2

, (9)

R (~c) is a roughness penalty, andβ is the smoothing parameter
which controls the relative influence of the roughness penalty.
The tildes abovecj and ~c represent an estimation of the

blob weights. The roughness penaltyR
(

~̃c
)

can be expressed
generally as

R
(

~̃c
)

=

K
∑

k=1

ψk

([

T~̃c
]

k

)

, (10)

given by Fessler [8], whereT is a matrix andψk is a potential
function that assigns a cost to theK combinations of blob
coefficient values represented by the matrix productT~̃c. In this
work, we use a penalty applied to difference of each estimated
blob weightc̃j with its horizontal and vertical neighbors.

In order to perform fully iterative image reconstruction,
we seek an algorithm that readily guarantees the enforcement
of positivity constraints and of monotonic decreases in the
objective function. The derivation of the update equation used
in this paper closely follows the derivation in Appendix C of
Ref. [9] and has the result:

c̃
(n+1)

j = c̃
(n)
j



1 +
ñj − β

(

4c̃
(n)
j −

∑K
k=1

tkjtkic̃j

)

2
∑M

i=1
aij ỹ

(n)

i + 8βc̃
(n)
j



 ,

(11)
where

ñj ≡ 2

M
∑

i=1

aij

(

yi − ỹ
(n)
i

)

(12)

and

ỹ
(n)
i ≡

N
∑

j=1

aij c̃
(n)
j . (13)

Whenβ = 0 in Eq. (11) above, the algorithm takes the form
of the image space reconstruction algorithm (ISRA). So, we
think of the above update as ISRA with an included roughness
penalty.

Due to the increased computational load introduced by
multiple sourcelets and detectorlets, it is not always computa-
tionally judicious to compute the system matrix for all sino-
gram projection angles using Eq. (7). We instead calculate the
system matrix elementsaij for one projection angle and utilize
rotations with linear interpolation for the remaining projection
angles. For forward projections into sinogram space, we rotate
the image space information to the angles complementary to
the rotation of the source and detectors at each projection angle
and then make the forward projection. For backprojections into
image space, we rotate the result of the backprojection to the
projection angles and sum the results over all angles.

While Eq. (11) is guaranteed to produce monotonic de-
creases in the objective function, it is sometimes necessary to

speed up the algorithm for large system matrices. We imple-
ment ordered subsets (OS) in order to speed up convergence.
That is, each iterative update takes into account only a subset
of all projection angles. By doing so, we decrease the time
to complete each iteration by approximatelyO−1, whereO is
the number of ordered subsets.

III. R ESULTS

A. Data simulation model

In order to generate independent data that account for finite
focal spot size, for finite detector size, and for an independent
model of attenuation, we used the Radonis CT simulation
package (Philips Research and Development). The simulation
package allows the specification of the geometry of the source
and detectors, including anode angulation. We simulated a
focal length of 570.0 mm and a detector-to-isocenter distance
of 470.0 mm. A single-row detector was simulated with
672 channels, each with a size of 1.4 mm in the transverse
direction and 1.0 mm in the longitudinal direction, measured
at the detector. We simulated 1160 projections, spaced equally
over 360◦. We used 3× 3 detectorlets when generating
simulation data using Radonis. The output of the system was
a linearized sinogram.

We simulated two types of sinograms with the simulation
software. The first “realistic sinogram” was simulated using
an anode angle of 5◦, with a projected focal spot size of
0.9 mm in height and 0.7 mm in width. For this simulation, 5
× 5 sourcelets were used. Our second sinogram was meant to
represent an idealized case. This “ideal sinogram” modeled a
point source by simulating only one sourcelet.

B. Iterative reconstruction model

The iterative reconstruction model used the same focal
length, detector-to-isocenter distance, detector size, and num-
ber of projections as the simulation model. The iterative re-
construction method based on Eq. (11) was used. The ordered
subsets and rotation-based methods discussed above were
employed. For the current study, 200 iterations of 20 ordered
subsets were completed. The blob volume elements were
placed on a Cartesian, two-dimensional (2D) grid with spacing
g = 1.296 mm. The “standard” parameters for 2D blob-based
reconstruction were used {m=2,a/g=2.00, andα=10.826} [4].
After iterating, Eq. (1) was used to convert the blob weights
to discrete Cartesian pixels.

In modeling the source during reconstruction, two models
were used. The first, the “realistic reconstruction,” generated
a finite source of the same dimensions as were used in the
simulation model. For calculating the numerical integrations
using this finite source, the source was divided into 5× 5
sourcelets, equally spaced along the angled edge of the source.
The detectors were divided into 5× 5 detectorlets, equally
spaced in the transverse and longitudinal directions. The
second source model, the “ideal reconstruction,” computed
the numerical integrations using a point source (only one
sourcelet). In this second model, the detectors were divided
into 11× 11 detectorlets, in an attempt to partially compensate
for any possible effects of computing fewer line integrals for
each numerical integration.
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C. Reconstructed images of impulse phantom

We used the impulse phantom developed in Ref. [3] in order
to investigate the resolution properties of the reconstructed im-
ages. The impulse phantom, as can be see in the reconstructed
image of Fig. 3, was an elliptical phantom with an array of
point impulses of size 0.1 mm.

Figure 3. Reconstructed impulse phantom using realistic sinogram, realistic
reconstruction, andβ = 1.

Horizontal line profiles through the center of three sinogram
and reconstruction combinations are shown in Fig. 4. The
plot is zoomed on the three most peripheral impulses in the
reconstructed images. The purpose of this plot is to illustrate
the resolution differences between the three combinations in
the region where differences are most expected. The impulse
peaks in the realistic sinogram reconstructed with the realistic
model do not show large differences from the impulses in
the realistic sinogram reconstructed with the ideal model. The
reconstruction of the ideal sinogram with the ideal model–a
hypothetical best case scenario–shows considerably higher and
narrower peaks than the other two sinogram-model combina-
tions.

IV. D ISCUSSION ANDCONCLUSION

We have implemented a fully iterative image reconstruction
algorithm that models a finite source and finite detectors
by using a numerical integration model based on sourcelets,
detectorlets, and volume elements modeled with the Kaiser-
Bessel basis function. Our iterative reconstruction algorithm
updates using a modified image space reconstruction algo-
rithm which guarantees the positivity constraint will be met.
We generated independent simulation data using the Radonis
software package, and reconstructed an impulse phantom for
comparison of various simulation and reconstruction models.

By comparing profiles through the image reconstructions of
the realistic impulse phantom sinogram data for both the real-
istic reconstruction model and the ideal reconstruction model
(Fig. 4), we provisionally conclude that modeling the finite
spot size in a linearized iterative reconstruction method did
not have a large effect on the resolution of our reconstructed
image. However, it is important to note that we are still
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Figure 4. Horizontal line profiles through middle of reconstructed impulse
phantom, zoomed to the three most peripheral impulses, for the realistic
sinogram reconstructed with the realistic model (blue), the realistic sinogram
reconstructed with the ideal model (red), and the ideal sinogram reconstructed
with the ideal model (green). Due to slight normalization differences, the two
reconstructions using the ideal model have been shifted up by 0.0006 so that
all three reconstructions have similar background values. In the above data,
β = 1.

optimizing a few factors that would allow us to claim there
was negligible effect with greater confidence. These include
the effect that the Kaiser-Bessel blobs may have on resolution
and the effect of varying the smoothing parameterβ.

In order to achieve conclusive results, we will compare the
present results with those obtained when the anode size and
angulation effects are modeled in the transmitted intensity
domain. This is what we did using a sinogram restoration
strategy in Ref. [3], and we plan to implement a fully iterative
algorithm based on a similar imaging equation for comparison
with the current linearized model results.
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Abstract—Tomographic images offer accurate three-dimensional
(3D) structural information about coronary arteries. For a number
of practical considerations such as imaging time and radiation
dose, it is often desirable to obtain 3D coronary-artery images
from data acquired at a few views, i.e., less than 10 views.
In this case, analytic algorithms which generally require data
collected at a large number of projection views would yield
reconstructions with significant aliasing artifacts, while effective
optimization-based (i.e., iterative) algorithms may be designed that
exploit the sparsity of coronary-artery structures for improving
image quality. In this work, we have designed and investigated
optimization-based algorithms for image reconstruction from few-
view data and applied them to reconstructing coronary artery
images from both few-view simulation data and few-view real
data. In particular, the core algorithms are based upon constrained
minimization of image’s total-variation (TV) in combination of
an iterative hard-thresholding technique. Quantitative assessment
of image quality has been performed, and results of the study
appear to suggest that carefully designed optimization-based,
sparsity-exploiting algorithms can yield images with higher fidelity
than some of the existing, well-known algorithms. A potentially
significant implication of the work is that coronary-artery images
of practical utility may be obtained from highly sparse data,
thus minimizing radiation dose to the imaged subject and also
shortening imaging time.

I. I NTRODUCTION

Computed tomography (CT) can be used for obtaining accu-
rate three-dimensional (3D) coronary-artery structural informa-
tion that can significantly benefit a large number of preclinical
and clinical applications [1]. In a standard CT setting, a large
number (300-1000) of projections are typically acquired from
which images can be reconstructed by use of existing algo-
rithms. However, the collection of data at a large number of
views would not only prolong considerably imaging time but
also involve a substantial amount of radiation dose that can
induce potentially significant damage to the imaged subject.
It is therefore of high practical interest in obtaining accurate
reconstruction of coronary arteries from a very small number
of projections.

Conventional filtered backprojection (FBP)-based reconstruc-
tion algorithms assume a continuous imaging model, and there-

fore work well for data densely sampled at a large number
of projection views. When applied to few-view projections,
however, the algorithms yield images with obscuring aliasing
artifacts, largely due to insufficient angular sampling. On the
other hand, optimization-based algorithms that are based upon
a discrete imaging model can, in general, reconstruct images
with fewer aliasing artifacts than the FBP-based algorithms.
In particular, the optimization-based algorithms allow the in-
corporation of appropriate prior knowledge about the imaged
subject for constraining properties of the reconstructed images.
For example, optimization-based algorithms have been explored
in which the sparsity of coronary-artery structures has been used
as prior knowledge in reconstruction of coronary-artery images
from few-view projections [2], [3], [4].

In recent years, a great deal of work on optimization-based
algorithms has been reported in which the sparsity of images
or their transforms has been demonstrated to be potentially
useful for determining an underlying discrete function from its
sparse samples [5]. Inspired by the work, we have developed
optimization-based algorithms for reconstructing CT images
from cone-beam data collected at a small number of projection
views, which minimizes the image’s total variation (TV) subject
to data and other constraints [6], [7]. The TV algorithms have
been demonstrated to yield images of potential utility in some
CT applications involving real data acquired at a number of
views substantially lower than what are used in current CT
imaging procedures.

In this work, we design and apply optimization-based al-
gorithms specifically tailored to reconstructing coronary-artery
images from few-view projections by exploiting the image
sparsity. Specifically, we investigate and exploit the contrained
TV-minimization [5] and iterative hard thresholding (IHT) [8],
[9] techniques for efficient reconstruction of sparse images, and
evaluate the impact of some key parameters in the algorithms on
image quality. In our study, we consider the case where the chest
wall and soft-tissues are removed, and the underlying image
is comprised of vasculature structure only, which therefore is
itself a sparse spatial distribution. We employ a circular cone-
beam micro-CT geometry for generating simulated data in the
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Figure 1. Volume-rendered gold-standard images. Left: The FORBILD
numerical phantom. Right: The coronary artery specimen image reconstructed
by use of FDK from 721 real projections.

numerical phantom study and for acquiring real projections in
the real-data study. We also carry out a preliminary evaluation
study of the reconstruction results. For example, in addition
to visual assessment of image quality, we specifically designed
and computed a number of quantitative metrics to evaluate and
compare the quality of the reconstructed images.

II. M ATERIALS AND METHODS

A. Projection data

We generated simulated coronary-artery projection data from
the FORBILD phantom [10], [2] using a circular cone-beam
geometry, in which the source-to-detector distance was 61.0
cm, and the source-to-rotation-axis distance was 59.7 cm. Five
projections were obtained at angles uniformly distributed over
the 2π scanning range. The phantom consists of a 256× 256×
256 binary image array, and each cubic voxel represents a
physical size of 82µm. The detector was modeled as a 512
× 512-bin flat panel, with each bin measuring 41× 41 µm2.
We display the phantom image in Fig. 1(a), which served as
the ground truth for our simulation studies.

Real cone-beam projection data were acquired with a custom-
made micro-CT scanner [11] sharing the same source-to-
detector and source-to-rotation-axis distances. The key com-
ponents of the scanner included a spectroscopic x-ray source
emitting quasi-monoenergetic beam at approximately 18keV,
and a fluorescing thin crystal plate, which was imaged with a
lens onto a 2.5× 2.5cm, 1024× 1024-pixel CCD array operated
at 16-bit gray-scale resolution (Princeton Instruments, NJ). A
human coronary artery cast specimen was positioned close to
the crystal and was rotated in 721 equiangular steps around
360o between each x-ray exposure. We display a schematic
and a photograph of the scanner in Fig. 2, and show the FDK
reconstruction of the specimen from all 721 projections in Fig.
1(b). This full-view FDK reconstruction was used as the gold-
standard image for our real-data studies.

B. Optimization-based image reconstruction

We have developed optimization-based algorithms for recon-
structing the coronary artery images by exploiting the image
sparsity. The first algorithm is the IHT-POCS algorithm, which

Figure 2. The custom-made micro-CT system for data acquisition. Top: a
schematic of the system and its components; Bottom: a photograph of the actual
system.

employs POCS to minimize the data distance, while setting
a hard threshold at each iteration to enforce s-sparsity to the
image, i.e. keeping only the largest s voxels and setting the
rest to zero [9]. The sparsity parameter s is obtained from prior
knowledge about the underlying image. When s is chosen as
a large number, for instance, the total number of voxels in
the image array, the hard-thresholding has no effect and the
algorithm reduces to standard POCS. When we reduce the value
of s to an appropriate range, the hard-thresholding step helps
the algorithm to seek among all images in agreement of data an
image with only s non-zero voxels. However, s cannot be chosen
unrealistically small, as the algorithm will fail to effectively
minimize the data distance [9].

The second algorithm is the TV-minimization algorithm,
which exploits the sparsity of images in their gradient magnitude
representation. The algorithm minimizes the image TV by
steepest-descent while enforcing the data distance constraint
by POCS, and therefore seeks among all image candidates in
agreement with projection data the one with minimum TV [7].
Since real data are always contaminated by inconsistency from
physical factors such as noise, a data-error tolerance parameter
ǫ is introduced in the algorithm to relax the constraint.

The third algorithm combines IHT with TV-minimization,
and is thus named the IHT-TV algorithm. The algorithm seeks
an image with minimum TV among all images satisfying the
data-distance constraint and the s-sparsity requirement [9]. Both
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parametersǫ and s need to be selected appropriately based
upon prior knowledge about the image and the data, and the
selection of these parameters significantly impact the the final
reconstructed image.

III. R ESULTS

We first applied the IHT-POCS, TV-minimization, and IHT-
TV algorithms to reconstructing the coronary-artery phantom
image from simulated projection data. In Fig. 5 we display
the middle transverse slices of images reconstructed from 5
projections by running these algorithms for 200 iterations.
Also displayed are the ground-truth image as well as images
reconstructed by use of the standard FDK and POCS algorithms.
While little information about the coronary-artery structure
could be derived from the FDK reconstructed image, it appears
that the optimization-based algorithms are able to improve the
image quality by reducing some artifacts. In Fig. 4 we show
the reconstructed images obtained after running the algorithms
for 2000 iterations. It appears that the image quality is further
improved by some of the optimization-based algorithms. In
addition, quantitative assessment of the reconstructed image was
carried out, in which we calculated a number of image-based
metrics relative to the ground truth. We list in Tab. I the results
of two of these metrics, the Pearson correlation coefficient and
the root mean square error (RMSE), which suggest that the IHT-
TV algorithm yields an image closest to the original phantom.
Additional results involving other quantitative metrics will be
presented at the conference.

From the real data of the coronary artery specimen, we
formed two few-view data sets consisting of 5 and 9 projections,
respectively, uniformly distributed over the2π range. We then
reconstructed images from these two data sets by applying
the FDK and different optimization-based algorithms. In Figs.
5 and 6 we show the reconstructed images obtained after
200 iterations. Based upon image visualization and quantitative
assessement results in Tab. II, similar observations as in the
numerical phantom study can be made. Additional extensive
results of reconstructed images and quantitative evaluations will
be presented at the conference.

Table I
QUANTITATIVE COMPARIONS OF IMAGES RECONSTRUCTED BY DIFFERENT

ALGORITHMS FROM NUMERICAL PHANTOM DATA

Metrics # Iter. FDK POCS IHT-POCS TV IHT-TV
RMSE 200 32.7 5.5 5.6 5.0 4.8
(10−2cm−1) 2000 4.0 4.0 2.9 1.6
Corr. Coeff. 200 0.31 0.89 0.88 0.91 0.91

2000 0.94 0.94 0.97 0.99

IV. D ISCUSSION

We have investigated and developed optimization-based algo-
rithms for image reconstruction from few-view projections by
exploiting image sparsity, and we applied these algorithms to

Figure 3. Images at the middle transverse slice of the numericalphantom
reconstructed from 5 projections by use of different algorithms. From left to
right, top row: ground truth, FDK. Middle row: POCS, IHT-POCS. Bottom row:
TV-minimization, IHT-TV. Iterative results were obtained after 200 iterations.
Gray-scale window: [0,1]cm−1.

Figure 4. Images at the middle transverse slice of the numericalphantom
reconstructed from 5 projections by use of different algorithms. From left to
right, top row: POCS, IHT-POCS. Bottom row: TV-minimization, IHT-TV. All
images were obtained after 2000 iterations. Gray-scale window: [0,1]cm−1.

Table II
QUANTITATIVE COMPARIONS OF IMAGES RECONSTRUCTED BY DIFFERENT

ALGORITHMS FROM REAL SPECIMEN DATA

Metrics # Proj. FDK POCS IHT-POCS TV IHT-TV
RMSE 5 18.5 3.4 2.9 3.6 2.2
(10−2cm−1) 9 14.1 2.7 3.5 2.4 1.6
Corr. Coeff. 5 0.25 0.80 0.79 0.86 0.93

9 0.36 0.88 0.85 0.91 0.96
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Figure 5. Images at the middle transverse slice of the real coronary artery
specimen reconstructed from 5 projections by different algorithms. From left
to right, top row: ground truth, FDK. Middle row: POCS, IHT-POCS. Bottom
row: TV-minimization, IHT-TV. Gray-scale window: [0.05,0.6]cm−1.

Figure 6. Images at the middle transverse slice of the real coronary artery
specimen reconstructed from 9 projections by different algorithms. From left
to right, top row: ground truth, FDK. Middle row: POCS, IHT-POCS. Bottom
row: TV-minimization, IHT-TV. Gray-scale window: [0.05,0.6]cm−1.

reconstructing coronary artery images from both few-view sim-
ulated data and few-view real data. From the reconstructed im-
ages and the quantitative assessment results, it can be observed
that these optimization-based, sparsity-exploiting algorithms can
yield images with higher fidelity than some of the existing, well-
known algorithms. Since these algorithms may yield images
with practical utility from significantly reduced amount of data,
they have potential implications of shortening data-acquisition
time as well as minimizing radiation damage to the imaged

subject. These advantages may particularly benefit applications
such as longitudinal imaging and dynamic CT. We have carried
out additional, extensive studies on image reconstruction and
quantitative evaluation, which are not included here due to
page limit, and we will present these additional results at the
conference.
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I. INTRODUCTION 
LL modern commercial CT scanners are based on the 

third-generation architecture: x-rays are emitted from a 
single x-ray focal spot onto a large arc-shaped or area 
detector. Also the dual-source CT scanner uses essentially the 
same architecture but with (almost) duplicated x-ray tubes and 
detectors. We have recently developed a new distributed 
source technology, enabling a number of radically novel CT 
architectures, such as stationary CT [1], inverse geometry CT 
(IGCT) [2-7], and stationary X-ray tomosynthesis systems [8]. 
Motivated to further reduce patient radiation dose and to cover 
an organ-in-rotation without compromising image quality, we 
are performing an in-depth study of the IGCT concept and are 
developing a gantry-based IGCT research prototype. We have 
previously presented several IGCT reconstruction algorithms 
[9] as well as a mathematical framework for the virtual bowtie 
[10]. We also presented our gantry-based IGCT research 
prototype in earlier stages of development [3, 4, 6]. We now 
present the first rotating-gantry experimental IGCT results, as 
well as a high-level analysis of x-ray source power and image 
noise.   

II. SYSTEM OVERVIEW 
This IGCT research prototype – shown in Fig 1 – is 
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designed to demonstrate large volumetric z-coverage (about 
160mm) without cone-beam, without scatter artifacts and with 
good spatial resolution throughout the entire scan volume. The 
source has two rows of focal spots separated in z by 100mm. 
The design consists of four source modules, each with two 
rows of four focal spots, for a total of 32 focal spots. The 
corresponding in-plane field-of-view is about 22cm in 
diameter. Initial experiments were performed with only one 
source module for an in-plane field-of-view of about 7cm 
diameter. The gantry rotation speed is one revolution per 
second. 
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Fig. 1.  CAD drawings and picture of the multisource inverse-geometry 
research prototype. 
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III. EXPERIMENTAL RESULTS 
The first experiments were performed with stationary 

gantry and rotating phantom. Some of these first images are 
shown in Fig 2. The top left image shows a uniform acrylic 
cylinder mounted on the rotating stage. The top right image is 
a longitudinal reformat of a hollow plastic tube with acrylic 
balls taped to the outside for geometric calibration purposes. 
The bottom left image shows a spheres phantom with a hollow 
acrylic cylinder filled with a low-density foam and several 
acrylic spheres to study artifacts and spatial resolution. The 
bottom right image shows a plastic cylinder filled with trail 
mix. We plan to acquire the first sinograms with rotating 
gantry in March and we expect to show rotating-gantry 
images at the conference. 

 

 

IV. GANTRY BALANCING AND ROTATION 
The CT system consists of a large number of components 

mounted on a rotating gantry. The x-ray source was developed 

by this project. Most components are standard GE Healthcare 
VCT64 and CT750HD product scanner parts. The detector 
modules are GE Healthcare CT750HD modules but the 
detector itself was custom designed and built by this project. 
A number of mechanical fixtures and weight stacks were 
designed specifically for the IGCT research prototype. The 
weight stacks were positioned at  5 specific locations on the 
gantry. Initial balancing was performed analytically and used 
to define the position of the weight stacks and the nominal 
value of the weights. For a more refined balancing, the gantry 
was balanced experimentally using piezo-electric strain 
gauges attached to the gantry. Fig. 3 shows pictures of the 
rotating gantry taken at a 4.23s gantry rotation speed. Movies 
of various gantry rotation speed will be shown at the 
conference. 

 

V. MULTISOURCE X-RAY TUBE UPGRADE 
The source was initially tested with a single source module. 

This staged approach made it possible to validate the module 
and then replicate it to achieve a larger field-of-view. Fig 4 
shows a picture of the source with the original module 
mounted centrally inside the vacuum chamber. The bottom 
shows a CAD drawing of the source in its ultimate 
configuration including 2 rows of 16 spots. 

The other source modules are currently being 
manufactured. Fig 5 first shows a picture of two of the four 
copper anode blocks. The bottom left picture shows the 
tungsten target plates that will be brazed onto the copper 
anode block. The bottom right shows the focusing plates that 
are part of the cathode assemblies and are designed to focus 
the electron beams to its desired shape and size. 

By the time of the conference the integration of the 32-spot 
x-ray source should be complete and we will show pictures of 
the complete assembly as well as possibly some initial 
validation experiments. Imaging experiments with 32 focal 
spots are scheduled after the conference. 

Fig. 3.  Four consecutive frames of the gantry rotating at 4.23s per revolution 
for initial testing. 

 

Fig. 2.  (top left) Picture of a uniform acrylic cylinder mounted on the 
phantom rotator inside the multisource CT gantry. The detector active area is 
seen on top and the source window at the bottom. (top right) Longitudinal 
reformat of a geometric calibration phantom. (bottom left) First image of a 
cylindrical test phantoms with spheres for resolution and artifact 
measurement. (bottom right) Longitudinal reformat of the trail mix phantom.
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VI. FLUX AND IMAGE  NOISE ENTITLEMENT 
 The source power and therefore the image noise are limited 

by several factors. First, the dispenser cathode electron current 
is limited to about 1200mA without significantly degrading 
lifetime. This is certainly not a bottleneck in the current 
multispot x-ray source. Second, HV stability may limit the 
operation of the tube. In initial tests repeated discharges or 
“spits” occurred and formed the bottleneck on the power we 
could achieve so far. We plan to continue seasoning 
experiments to eliminate spits. The third and most 
fundamental limiting factor is the target temperature. The 
source power is ultimately limited by the melting temperature 
of tungsten. Assuming a cold target, 120kVp tube voltage, a 
1mm focal spot (4.62mm2 thermal area for a 12.5 degree 
target angle) and a 100us dwell time, to reach the melting 
temperature of tungsten the tube current in a single x-ray pulse 
would be 269mA. Beam current can be increased to about 
850mA for a single pulse with 10us dwell time.  However, for 
a 10s scan with hundreds of pulses per spot and a repeat time 

of 4.3ms the temperature in the focal spots and surrounding 
area will build up, and the maximum tube current is only 
157mA at 120kVp, 1mm focal spot and 100us dwell time. For 
even longer scan times, the bulk temperature of the source 
starts to rise and oil cooling becomes critical. We also expect 
active cooling would reduce the frequency of HV spits. Oil 
cooling is part of the design but its actual implementation is 
planned at the end of this project.   

 
For comparison, clinical scanners have tube currents of at 

least 500mA for this small focal spot size and rotation speeds 
of 0.35s. Our prototype has a rotation speed of 1s and a voxel 
duty cycle (fraction of time any given voxel is irradiated) of 
about 5%. Hence, the integrated flux would be 20 times lower 
with our research experiments or the noise standard deviation 
will be about 4 to 5 times higher. Experimentally we can 
compensate for this by performing slower scan times. 
Eventually, we foresee an IGCT scanner with reduced source-
to-iso distance, improved detector efficiency, reduced dwell 
times, increased detector size (to improve the voxel duty 
cycle) and use a combination of the virtual bowtie and 
statistical reconstruction to achieve acceptable clinical noise 
levels. 

 

VII. SUMMARY 
To our knowledge this is the world’s first rotating gantry 

multi-source inverse-geometry CT system. We have 
demonstrated multi-source imaging, gantry rotation and by the 
time of the conference we will have demonstrated the 
combination of both and completed the integration and initial 

Fig. 4.  (top) Picture of the source with the original module mounted centrally 
inside the vacuum chamber. (bottom) CAD drawing of the source in its 
ultimate configuration including 2 rows of 16 spots. 

 

 

Fig. 5.  (top)  Picture of two of the four copper anode blocks. (bottom left) 
Picture of the tungsten target plates that will be brazed onto the copper anode 
block. (bottom right) Picture of the focusing plates that are part of the cathode 
assemblies and are designed to focus the electron beams to its desired shape 
and size. 
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testing of a 32-spot x-ray source. 
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Abstract— In this paper, a (non-statistical) four-dimensional 
(4D) iterative reconstruction scheme is developed to improve 
noise characteristics and/or reduce radiation exposure in 
cardiac CT. In our implementation, the update equation of 
iterative reconstruction is based on Filtered Backprojection 
(FBP) and the solution is stabilized using nonlinear regulari-
zation priors, operating in four dimensions. Image volume 
datasets are sampled at adjacent temporal positions with 
respect to a central optimized cardiac phase. The regulari-
zation prior operates on a 4D cube surrounding each central 
voxel in 4D space. Generalized Gaussian Markov Random 
Field (GGMRF) priors are used to apply non-linear low-pass 
filtration to the update images, reducing image noise at the 
same time maintaining image sharpness. Using a local noise 
estimator the local noise level of the image volume can be 
accurately estimated to scale the regularization prior. Not only 
edges in spatial domain but also edges in temporal domain are 
preserved.  
Thus, the temporal resolution of image data is maintained, 
despite the usage of temporal data that substantially exceed 
the reconstruction range of a conventional cardiac recon-
struction. Consequently, the noise statistics is significantly 
improved, because non-correlated image data at different 
temporal positions are utilized. 
To reduce the high computational load, the iteration in 4D can 
be restricted to image space, the regularization operating as a 
mere iterative image filter followed by a conventional 3D 
iterative reconstruction.   
We demonstrate the potential of noise reduction on basis of 
clinical cardiac CT data. As an example, for cardiac dual 
source CT (DSCT) data, a noise reduction of 60% was 
achieved, while maintaining spatial and temporal image 
sharpness. Even in case of a very high, irregular heart beat 
with average heart rate of 115 beats per minute (bpm) the 
temporal resolution was fully restored. The potential for noise 
reduction can be utilized to effectively reduce radiation 
exposure at the same time maintaining image quality.  
 

Index-Terms: FBP-based iterative reconstruction, GGMRF, 
regularization prior, cone-beam cardiac CT, dual source CT 
(DSCT) 
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I. INTRODUCTION 
 
In cardiac CT, among others, high temporal resolution and 
low image noise are prerequisites for accurate diagnosis of 
coronary artery disease. In addition, cone and spiral 
artifacts might detoriate image quality, if detectors with 
large cone-angles are used.  
Moreover, cardiac scan modes apply high radiation dose to 
the patient, hence, any means to reduce the X-ray exposure 
to the patient is desirable. Basically, image noise can be 
reduced by increasing the tube current. Yet, at the same 
time this increases patient dose. Also, image noise can be 
reduced extending the range of the stream of projection data 
used for image reconstruction. However, by doing so the 
temporal resolution of the image is impaired, which might 
cause motion artifacts. In general, motion artifacts obscure 
a meaningful diagnosis of coronary disease. The question is 
how to improve the noise statistics of a cardiac image at 
constant radiation exposure and maintained temporal 
resolution?  In this paper we present a 4D iterative recon-
struction scheme to improve noise characteristics in cardiac 
CT. 
The reconstruction is based on Iterative Weighted Filtered 
Backprojection (I-WFBP) reconstruction. We have applied 
the iterative improvement scheme, illustrated in Fig. 1, to 
the non-exact WFBP method proposed by Stierstorfer et al. 
[1]. Basically the reconstruction is of the Feldkamp-type 
with pre-filtration of cone-beam data. In the helical 
acquisition mode at table speeds below the maximum 
redundant data are efficiently processed on purpose of 
optimal dose usage.  
To stabilize the solution and to improve the convergence of 
the iteration loop, regularization priors are used which are 
based on GGMRF functions [3]. Image sharpness can be 
preserved by virtue of non-quadratic prior functions.  The 
amount of noise reduction is controlled by the 
regularization strength and the number of iterations.  
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Fig. 1: Illustration of the Iterative Weighted Filtered 
Backprojection (I-WFBP) method. First, input data are rebinned 
to semi-parallel geometry. Given an initial image vector 

, a sequence of image vectors is generated by the 

update formula f

NRf ∈0
k+1 = fk + α·Q·(preb−Pfk). The matrices 

andNxMRQ ∈ MxNRP ∈ correspond to the WFBP method 
and a projection operator modelling the acquisition process, 
respectively.  
 
 

II. METHOD 

A. Iterative Weighted Filtered Backprojection (I-WFBP) 
 
Let N be the number of voxels of the image volume and M 
the total number of x-ray attenuation measurements. 
Furthermore, let  denote input data that have 
been rebinned to semi-parallel cone-beam data and 

 denote a vector representing the initial voxel 
volume, which is obtained by WFBP reconstruction. The 
update step of I-WFBP is then given by  

M
reb Rp ∈

NRf ∈0

 
(1)  )kfPrebp(Qkkfkf ⋅−⋅⋅+=+ α1

 
where Q is the reconstruction operator from the previous 
section and MxNRP ∈  is the projection operator. In this 
way, a sequence of voxel volumes {f0, f1, ...} is produced. 
Due to the pre-filtration of the rebinned projection data with 
a sharp convolution kernel, the point-spread function of the 
image signal is estimated and has not to be approximated by 
iteration. This substantially improves the convergence rate 
of the iteration. The second term on the right side of eq. (1) 
is called correction term and manages reduction of cone-
beam and spiral artifacts that are introduced by non-exact 
image reconstruction. Experiments have shown that only a 
few iterations are needed to obtain significant reduction of 
cone-and spiral artifacts. 

B. Regularization 
 
To stabilize the update image of eq. (1) a penalty term has 
to be added which imposes constraints on adjacent image 
pixels. Eq. (1) then reads as  
 

(2) 
 

)kf(Rk)kfPrebp(Qkkfkf ⋅−⋅−⋅⋅+=+ βα1

e.g. R being a regularization filter based on GGMRF priors  
[3]. This class of regularization priors is characterized by a 
range filter operating on the gradients of image grey scale 
values and a domain filter, which can be realized by the 
inverse distance of adjacent pixels in the simplest case (see 
eq. (4)). One class of range filters consists of potential 
functions that can be cast as follows:  
 

(3) )qp(

c

df

p
df

)df(V −
+

=

1

 

where df denotes the local image contrast. p and q are 
parameters satisfying 1 ≤ q ≤ p ≤ 2 for convex functions.  c 
is a local measure of image noise, which can be derived, 
minimizing local noise variances in the image volume. This 
class of regularization priors provides high flexibility in 
terms of adjusting contrast dependent image sharpness and 
image noise.  
Basically, the update equation (2) holds for a 3D voxel 
volume f. In this case the voxel volume in the k-th loop is 
obtained by the previous update and a weighted sum of the 
correction image and the regularization image.  
The regularization part can be written as: 

(4) ))j(kf)i(kf(
K

j df

dV
ijd

N

i ie)kf(R −∑
=

⋅⋅∑
=

=
11

 

Here, ei denotes the unit vector with a 1 at position 
)N,(i 1∈ voxels. K specifies the number of nodes adjacent 

to the momentary central voxel i. The central voxel is 
shifted through the entire image volume. 
 

C. 4D regularization in cardiac CT 
 
In cardiac CT redundant data acquisition is required, to 
potentially reconstruct volume data at different cardiac 
phases. For example in spiral acquisition modes, the feed 
has to be limited, such that for a given z-position any cardiac 
phase within the cardiac cycle can be reconstructed, leading 
to a high redundancy of measured data. Thus, it is possible 
to reconstruct image volumes at adjacent cardiac phases and 
extend the voxel volume to a 4D voxel volume fk (e.g. this 
volume can be organized by sequentially appending the 3D 

volumes  with l
kf )L,(l 1∈ , where L denotes the total 

number of adjacent temporal positions at which volume data 
have been reconstructed). Thus eq. (2) has to be extended: 
 

(5) 
 

)kf(DRk)l
kfPl

rebp(Qk
l
kf

l
kf 41 ⋅−⋅−⋅⋅+=+ βα

The regularization part can be combined to a 4D 
regularizer: 
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j df

dV
ijd
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⋅
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⋅

=
=

114  

 
Here, ei denotes the unit vector with a 1 at position 

voxels. K·L specifies the number of nodes 
adjacent to the momentary central voxel i. The central voxel 
is shifted through the entire 4D image volume f

)LN,(i ⋅∈ 1

k. 
The cube of nodes adjacent to a central voxel becomes a 4D 
cube extending also in temporal domain. Basically eq. (5) 
can be updated slice by slice, using the respective projection 
data for different cardiac phases. The correlation 
between cardiac phases and projection data is given by the 
ECG of the patient. 

l
rebp

However, the computation load in case of 4D cardiac CT 
data is very high. A way out of this is a two step approach. 
In a first step eq. (5) is modified to a mere image filter by 
setting the correction term to zero, i.e. . The 
update equation can be condensed and simplifies to  

kk ∀= 0α

 
(7)  )kf(DRkkfkf 41 ⋅−=+ β

 
We have to keep in mind that fk is a 4D image volume. This 
equation is updated in the vicinity of the selected (optimal) 
cardiac phase. Basically being a non-linear low-pass filter 
on 4D image data, the update equation does not converge. 
The stopping criterion has to be determined empirically. 
Due to the special type of non-linear regularization 
temporal and spatial edges can be preserved by a proper 
selection of the GGMRF prior. At the same time, noise 
characteristics can be substantially improved on homo-
geneous regions, due to the correlations induced to the 
noise in tissue with low contrast. The characteristic line as a 
function of image contrast depends on the choice of the 
GGMRF prior. 
After this first iteration we take that 3D image volume 
f̂ out of the 4D volume data that corresponds to the 

optimal cardiac phase. Thus, the iteration problem has been 
reduced by one dimension. Eq. (2) can be rewritten as  
 

(8) )kf̂(Rk)kf̂Prebp(Qkkf̂kf̂ ⋅−⋅−⋅⋅+=+ βα1
 

Under certain conditions (see [1]), the iteration converges. 
Consequently, due to the correction term 
 

)kf̂Prebp(Qk ⋅−⋅⋅α ,  
 
also cone-beam and spiral artifacts can be reduced.  
 

III. EVALUATION 
 
In the evaluation of our iterative reconstruction for cardiac 
cone-beam data, we concentrate on cardiac dual source CT 
(DSCT) data.  In DSCT two X-ray sources and two 

corresponding measurement systems are mounted on a CT 
gantry with a mechanical offset of 900. One detector (A) 
covers the entire scan field of view (SFOV), while the other 
detector (B) is restricted to a smaller, central field of view. 
Due to the simultaneous data acquisition and the 900 
angular offset, complementary data segments are measured 
resulting in reduction of exposure time per image by a 
factor of 2, and thus the temporal resolution is increased by 
the same factor. With a rotation time of the CT gantry of 
285 ms, a temporal resolution of 75 ms is established 
(method 1). To improve noise characteristics of the DSCT 
images, the reconstruction ranges of data from system A 
and B, respectively can be enlarged [4], however, 
compromising the temporal resolution (method 2, see 
Fig.2). As derived above, the iterative approach (method 3) 
utilizes the improved noise statistics due to the enlarged 
projection ranges going into the update equation (5), at the 
same time preserving contrast edges in space and time. Fig. 
3 shows an example from a patient with extremely high, 
irregular heart beat. Due to the reduced exposure time of 
DSCT, the Right Coronary Artery (RCA) is sharply 
delineated even at this high heart rate. Using method 2 with 
data ranges of length 1800 for both systems A and B, noise 
is actually reduced, but severe motion artifacts are 
observed, due to the doubled exposure time. Using method 
3, temporal resolution is maintained compared to method 1, 
as well reducing image noise substantially.  
Fig.4 shows a second example from a patient with a stable 
heart beat of average heart rate of 61 bpm. Both in the 
ascending aorta and in the liver, circular areas in homo-
genous regions have been evaluated regarding image noise. 
As expected, method 2 shows noise reduction near to a 
factor of √2 due to the double size reconstruction interval. 
The noise reduction for method 3 is between 45% in the 
aorta to 60% in the liver region.  The large noise reduction 
is by virtue of the 4D regularization procedure utilizing the 
non-correlated image data at adjacent cardiac phases. 
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Fig. 2 Temporal resolution and normalized image noise as a 
function of the reconstruction interval θ of detector A and B – 
data, respectively. Increased reconstruction interval decreases 
image noise at the same time increasing the exposure time of the 
image, and thus decreasing temporal resolution. 
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IV. CONCLUSION 
 
We presented a new reconstruction scheme for cardiac CT 
that enables the utilization of redundant cardiac data to 
improve the noise statistics without increasing the radiation 
exposure to the patient, at the same time maintaining 
temporal resolution. As an example, we addressed cardiac 
DSCT imaging. In DSCT one major claim is, that coronary 
artery disease can be diagnosed at any heart rate. However, 
e.g. in case of obese patients with high image noise, 
temporal resolution has to be sacrificed in favor of the 
capacity to decrease image noise. This would restrict the 
cardiac application of DSCT to moderate heart rates. 
However, with the new reconstruction scheme image noise 
can be reduced substantially (60%), while maintaining 
spatial resolution and temporal resolution. The huge 
potential for noise reduction can also be utilized for 
reduction of radiation exposure at constant image noise. 
The presented scheme not only applies to DSCT, but also to 
Single Source CT (SSCT). In any case, noise can 
substantially be reduced while maintaining the temporal 
resolution provided by the fast rotation time of today’s CT 
scanners. 
 

 
 
Fig. 3: Axial images at the RCA outlet reconstructed from a 
cardiac DSCT dataset. The patient showed a highly irregular 
ECG with an average heart rate of 115 bpm. (left) method1 

(reconstruction interval ): cardiac DSCT reconstruction 

with temporal resolution of 75 ms (middle) method2 ( ): 
cardiac DSCT reconstruction with temporal resolution of 150 ms 
(right) method 3: proposed iterative reconstruction with temporal 
resolution of 75 ms. The regularization prior was parameterized 
with p = 2, q = 1.2, . Please note that for this high 

heart rate, method 2 fails due to the severe motion artifacts in the 
proximal part of the RCA (arrow). 
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Fig. 4: Double oblique MPR images of a cardiac DSCT data set. 
The patient showed a regular ECG with an average heart rate of 
61 bpm. The initial FBP – reconstruction was performed using a 
conventional cardiac reconstruction kernel (B46f) (left bottom) 

method 1 ( ): temporal resolution of 75 ms (top) method2 

( ): temporal resolution of 150 ms (middle) method 3: 
proposed iterative reconstruction with temporal resolution of 75 
ms. The regularization prior was parameterized with p = 2, q = 
1.2, . Both in the ascending aorta and the liver, 

circular areas in homogenous regions have been evaluated with 
respect to image noise. As expected, method 2 shows noise 
reduction near to a factor of √2 due to the double size 
reconstruction interval. The noise reduction for method 3 was 
between 45% in the aorta and 60% in the liver region.  The large 
noise reduction is by virtue of the 4D regularization procedure 
utilizing the (non-correlated) image data at adjacent cardiac 
phases. 
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ECG-Gated Cardiac Reconstruction
for Non-Periodic Motion

Christopher Rohkohl, Günter Lauritsch, Lisa Biller and Joachim Hornegger

Abstract—The 3-D reconstruction of cardiac vasculature using
C-arm CT (rotational angiography) is an active and challenging
field of research. Current reconstruction algorithms do strongly
depend on a high degree of cardiac motion periodicity for
working properly. In the interventional environment patients
often do have arrhythmic heart signals or cannot hold breath
during the complete acquisition. This represents one important
class of clinical cases that cannot be reconstructed with current
approaches.

We present a motion compensated gated reconstruction algo-
rithm consisting of a 4-D time-continuous affine motion model
which is capable of reconstructing datasets with highly non-
periodic motion patterns. A time-correlated objective function
is introduced which measures the error between the measured
projection data and the dynamic forward projection of the motion
compensated gated reconstruction. Reconstruction results are
provided using the data of the open CAVAREV-platform. Further,
a clinical case of coronary arteries corrupted by breathing motion
is investigated. The results show that the proposed algorithm
provides excellent reconstruction quality in cases where classical
approaches achieve totally degraded image quality.

I. INTRODUCTION

A. Purpose of this Work

ONE key component of image guidance in the field
of interventional cardiology is three-dimensional image

information before, during and after interventional procedures.
Three-dimensional image data can support complex interven-
tional procedures, such as transcutaneous valve replacement,
interventional therapy of atrial fibrillation, implantation of
biventricular pacemakers and the assessment of myocardial
perfusion [1], [2].

With the technology of C-arm CT it is possible to recon-
struct intraprocedural 3-D images from angiographic projec-
tion data [3]. Currently, the major limitation of this technology
is its insufficient temporal resolution which limits the visual-
ization of fast moving parts of the heart. Due to the long
acquisition time of several seconds, at which a couple of heart
beats and breathing motion can occur, motion related image
artifacts, e.g. blurring or streaks are observed. Therefore it is
essential to develop algorithms that can cope with cardiac and
respiratory motion.

B. State-of-the-Art
An established technique for time-resolved cardiac recon-

struction is to record the electrocardiogram (ECG) during the

C. Rohkohl and J. Hornegger are with the Pattern Recognition Lab,
Department of Computer Science, Friedrich-Alexander-University Erlangen-
Nuremberg, Erlangen, Germany, Email: christopher.rohkohl@informatik.uni-
erlangen.de. G. Lauritsch and L. Biller are with the Siemens AG, Healthcare
Sector, Forchheim, Germany.

data acquisition. Based on the ECG-signal a relative cardiac
phase is assigned to each projection image assuming a cyclic
heart motion [4]. The phase information is used for a phase-
correlated reconstruction by gating or motion estimation and
compensation. A gated reconstruction takes only those images
into account that lie inside a defined phase window, that is
centered at the targeting cardiac phase to be reconstructed [5],
[6], [7], [8]. This is, however, not ideal in terms of missing
data for single-run acquisitions. The incomplete data leads to
streak artifacts and a poor signal-to-noise ratio. To increase
the data usage, the cardiac motion is estimated and motion
compensated reconstruction algorithms are applied [9], [5],
[10], [11].

The previous methods were shown to provide reasonable re-
sults in the presence of regular heart rates without breathing or
other patient motion. However, in the field of intraprocedural
cardiac reconstruction, the patients suffer from heart diseases
and cannot completely hold breath, stay still or have irregular
heart beats. Those aspects do conflict with the periodicity
assumption of ECG-based methods.

In literature these problems were addressed by approximate
2-D corrections in the projection image [12]. In a previous
work [13] we presented an algorithm that is able to estimate
4-D non-periodic motion patterns using a time-continuous B-
spline motion model. Both algorithms require an initial 3-
D reference image as a priori information. This reference
is easy to obtain for slight breathing motion or arrhythmic
cardiac motion by ECG-gated reconstruction. However, strong
breathing motion can make it impossible to obtain a sufficient
initial image. This weak point is to be solved in this paper.

C. Outline

In this paper a method for motion estimation and compensa-
tion of an ECG-gated reconstruction for non-cyclic motion pat-
terns is proposed. It is based on the assumption that breathing
motion and heart irregularities around a certain heart phase can
be assumed to be an affine motion. For that a time-continuous
affine motion model is introduced which is estimated in an
optimization procedure. The motion parameters are calculated
such that the similarity between the measured projection data
and the dynamic forward projection of the corresponding 3-D
reconstruction is maximized.

It is demonstrated that the algorithm is capable to estimate
cardiac motion and breathing motion for obtaining reasonable
reconstruction results of cardiac vasculature.
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II. AFFINE 4-D MOTION ESTIMATION AND
RECONSTRUCTION ALGORITHM

A. General Idea

The quality of ECG-gated reconstructions highly depends
on the periodicity of the motion. If the physical motion state
of the heart varies for the scanned heart beats, this poses a
problem for reconstruction algorithms that assume periodicity.
Two major sources of non-periodicity can be identified. First,
for varying heart rates, i.e. arrythmias, the ECG-phases cannot
be correlated exactly to a physical motion state of the heart
[4]. Furthermore, breathing motion adds a second motion
component leading to a non-periodic motion.

However, in previous investigations, e.g. by Shechter et al.
[14] it has been shown that heart phase variations and res-
piratory motion of cardiac vasculature can be modelled using
global transformations, i.e. rigid body transformations or affine
transformations. In the following sections an algorithm for the
estimation of such an affine motion between the different heart
beats is presented.

B. Affine 4-D Time-Continous Motion Model

We assume a time-continous motion model that maps
a voxel x = (x0, x1, x2)T to a new voxel location x ′

for each time when a projection image is acquired. It is
conceptionalized by a function M : N× R3 × S 7→ R3 with
M(i,x , s) = x ′ transforming the voxel coordinate x at the
time of the i-th projection image. The mapping is based on
the motion model paramters s ∈ S. In this work a global affine
motion model is used.

For that a set of time points is created. Each time point is
assigned 12 affine parameters that describe the affine transfor-
mation at that moment. The set of time points is determined
from the ECG-signal. We are choosing two time points per
heart beat. In particular it is the reference heart phase hr and
an additional phase hr +∆h. For both heart phases a nearest-
neighbor gating is performed, i.e. only the projection which
is closest to the desired point in the cardiac cycle for each
acquired heart beat is selected. For a heart phase h this set
of projection images is denoted Nh. The complete set L of
temporal control points is then given by

L = {1, N} ∪ Nhr ∪Nhr+∆h , (1)

where the number of projections ranges from 1 to N . The
first and last projection image is added such that no boundary
problems will occurre in the following.

The affine parameters s l ∈ R12 for a single time point
l ∈ L is a 12-element vector with the following components:
s l = (t0, t1, t2, α0, α1, α2, a0, a1, a2, b0, b1, b2)T , where ti
represents the translation along, αi the rotation around, ai the
scaling along and bi the shearing of the i-th coordinate axis.
The complete parameter vector s ∈ S, S = R12|L| is then
given by

s = (sL1 , . . . , sL|L|)
T (2)

with Li beeing the i-th smallest element of L.
For an arbitrary projection image i the affine transform

parameters s̃i are then obtained by temporal interpolation of

each component. In our work a cubic B-spline interpolation
[15] has been used.

The final motion model is then formally given by

M(i,x , s) = x ′ with As̃i

(
x
1

)
=
(
x ′

1

)
(3)

where As̃i
is the affine transformation matrix in homogenous

coordinates for the affine parameters s̃i. The creation of the
affine transformation matrix can be found in standard math or
computer vision literature, e.g. [16].

C. Motion Compensated ECG-Gated Reconstruction

1) Projection Image Preprocessing: For motion estimation
we are only interested in the motion of the cardiac vascula-
ture. Therefore we apply a background reduction technique
previously proposed by Hansis et al. [8]. By applying a
morphological top-hat filter the vasculature remains and the
background is removed to a large degree. In the following
this preprocessed projection data will be referred to by the
function p : N × R2 7→ R where p(i,u) returns the value of
the i-th preprocessed projection image at the pixel u .

2) Reconstruction Algorithm: For motion estimation and
correction a dynamic reconstruction algorithm f(x , s) is de-
fined. The function f returns the reconstructed object value
at a voxel x based on the motion model parameters s .
In principle, any dynamic reconstruction algorithm could be
used. In this paper, an extension of the FDK reconstruction
method for moving objets is utilized [5], [10]. The ECG-
gating is performed by applying a weighting factor λ to each
image which is calculated from the closeness to the reference
heart phase. The dynamic ECG-gated FDK reconstruction
fhr : R3 × S 7→ R is then given by

fhr(x , s) =∑
i λ(i, hr) · w(i,M(i,x , s)) · pF (i, A(i,M(i,x , s))) .(4)

The function w : N × R3 7→ R is the distance weight of
the FDK-formula. The pre-processed, filtered and redundancy
weighted projection data is accessed by the function pF : N×
R2 7→ R where pF (i,u) returns the value of the i-th image
at the pixel u . The pixel location u is determined by the
perspective projection A : N× R3 7→ R2, where A(i,x ) = u
maps a voxel x to a pixel location u in the i-th projection
image.

The function λ is a weighting function that is used for
obtaining an ECG-phase correlated reconstruction for the heart
phase hr ∈ [0, 1]. It is given by

λ(i, hr) =

{
cos β

(
d(h(i),hr)

ω π
)

if d(h(i), hr) ≤ ω
2

0 otherwise
(5)

where h(i) is the heart phase of the i-th projection image
and ω ∈ (0, 1] is the width of the non-zero support region
of the weighting function. The parameter β ∈ [0, inf) con-
trols the shape of the support region, e.g. a value of zero
corresponds to a rectangular shape [10]. The function d is a
distance function which measures the distance between two
motion phases. For a relative heart phase it is defined as
d(h1, h2) = minc∈{0,1,−1} |h1 − h2 + c|.
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D. Objective Function for Motion Estimation
Motion estimation is formulated as a multi-dimensional

optimization problem where the motion model parameters
ŝ ∈ S maximizing the objective function L : S 7→ R need
to be estimated, i.e.

ŝ = arg max
s∈S
L(s) , (6)

The objective function introduced in this paper is motivated
by the basic relationship of the motion compensated recon-
struction f with the measured projection data p. Maximum
intensity projections can be created from a reconstruction
f(x , s) by dynamic forward projection:

r(i,u , s) = max
x∈Li,u

fhr

(
M -1(i,x , s), s

)
. (7)

The function r : N× R2 × S→ R returns the dynamic max-
imum intensity forward projection of the ECG-gated and
motion compensated reconstruction fhr . The voxels on the
straight measurement ray Li,u of the i-th image hitting the
detector at pixel u are transformed by the inverse motion
model to consider the motion state observed at the projection
image i.

The matching of the measured and preprocessed data p
and the forward projected data r is assessed by computing
the average normalized cross-correlation (NCC). Formally, our
objective function is then given by:

L(s) = 1
ν

∑N
i

(
λ(i, hr)

∑
u

(p(i,u)−µpi
)(r(i,u,s)−µri,s

)

σpi
σri,s

)
(8)

with the normalizing factor ν = (Ip−1)
∑N
i λ(i, hr), Ip being

the number of image pixels u of a projection and µ, σ being
the mean and standard deviation of the subscripted image.

The value of the objective function ranges L(s) ∈ [−1, 1]
with the maximum value representing a perfect linear relation-
ship of the measured and forward projected data. The NCC
of the i-th projection image pair is weighted by the gating
function λ as it characterizes the influence on the dynamic
ECG-gated reconstruction.

E. Optimization Strategy
For maximization of Eq. (8) a stochastic gradient asscent

method is used. In each iteration one of the 12 affine param-
eters is selected with a certain probability. For initialization,
all parameters are assigned the same probability. The gradient
is computed using finite differences by varying the selected
parameter for all time points. Next, one step is taken into the
gradient direction with a fixed step size. The probability of
the parameter being selected in the next iteration, is set pro-
portional to the increase of cost function value. Optimization
stops after a certain number of iterations or if the convergence
ratio drops below a certain threshold.

This kind of stochastic selection of parameters for the
gradient-based optimization procedure has the benefit that it
picks out the most beneficial parameters. In that way a fast
convergence with as few as possible cost function evaluations
was found. This especially holds because mainly the non-
periodic parts of the motion are caused by translational or
rotational components which are preferred during optimization
if they gain a greater gain in objective function value.

F. Implementation Details

One evaluation of the objective function Eq. (8) comprises
an ECG-gated reconstruction, an ECG-gated forward projec-
tion and the computation of the quality measure. Each step
is very well parallelizable on the graphics card [17], [18].
The algoritm was implemented on the GPU using the CUDA
2.2 programming environment [19]. The backprojection of
the FDK-reconstruction and forward projection are based on
projection matrices. The affine matrix As̃i in Eq. (3) only
depends on the projection geometry and is independent from
the voxel location. This allows us to replace the voxel-
wise computation of the motion transform M by a right-
side multiplication of the projection matrix with the affine
transformation matrix. Consequently, no additional overhead is
introduced during forward or backward projection operations.

III. EXPERIMENTAL SETUP

A. CAVAREV-Platform

The proposed algorithm has been applied to one of the
datasets of the open CAVAREV-Platform [20]. It is an freely
available phantom dataset based on true patient dataset with
combined cardiac and breathing motion. The standard ECG-
gated reconstruction and the motion compensated reconstruc-
tion are visually compared. The number of iterations was set
to 300. The reconstruction parameters were set to hr = 0.95,
hr + ∆h = 0.45, ω = 0.25, β = 0. As a baseline, the same
dataset with a strictly periodic motion is reconstructed with
the same parameters. Image reconstruction is performed on an
image volume of 203 cm3 distributed on a 2563 voxel grid.

B. Clinical Data

The presented algorithm has been applied to the reconstruc-
tion of a right coronary artery dataset which was corrupted by
breathing motion because the patient ignored the breathing
command. The dataset was acquired on an Artis Zeego C-
arm systems (Siemens AG, Healthcare Sector, Forchheim,
Germany). It consists of N = 133 projection images acquired
in 5 seconds with a size of 960× 1240 pixels at an isotropic
resolution of 0.32 mm/pixel. The standard ECG-gated recon-
struction and the motion compensated reconstruction are visu-
ally compared. The number of iterations was set to 300. The
reconstruction parameters were set to hr = 0.7, hr+∆h = 0.2,
ω = 0.2, β = 0. Image reconstruction is performed on an
image volume of 203 cm3 distributed on a 2563 voxel grid.

IV. RESULTS AND DISCUSSION

A. CAVAREV-Platform

In Fig. 1 the reconstruction results are depicted. It can be
seen that the standard ECG-gated reconstruction leads to very
bad image quality for the non-periodic motion pattern. The
vasculature cannot be located in the resulting 3-D reconstruc-
tion. In contrast, the proposed method can fully recover the
vascular structure. The reconstruction quality is comparable to
the reference with a periodic motion.
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(a) Baseline (b) Standard (c) Proposed

Fig. 1: Reconstruction results for the dataset of the CAVAREV-
platform. (a) ECG-gated reconstruction for the strictly periodic
dataset as baseline. (b) ECG-gated 3-D image for the dataset
corrupted by breathing motion. (c) Result for the proposed
algorithm for the dataset corrupted by respiratory motion.

(a) Standard (b) Proposed

Fig. 2: Reconstruction results for the clinical dataset of the
coronary arteries.

B. Clinical Data

In Fig. 2 the reconstruction results are depicted. For the
clinical data similar results are obtained as for the CAVAREV
phantom study. The proposed algorithm outperforms the stan-
dard ECG-gating as it can successfully handle the non-periodic
motion pattern of the dataset.

The runtime for the presented setups was in average 20
minutes on a NVIDIA Quadro FX5600 graphics card.

V. CONCLUSIONS AND OUTLOOK

A major clinical challenge of C-arm based cardiac vascu-
lature reconstruction is non-periodic motion. In this paper a
framework for the ECG-gated 3-D reconstruction with affine
motion correction for non-cyclic motions has been introduced.
It is shown in a simulation study and on clinical datasets
that the method is able to perfectly reconstruct datasets where
classical approaches fail.

Disclaimer: The concepts and information presented in this paper
are based on research and are not commercially available.
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 Abstract – With the continuous resolution improvement in 
C-arm and CT angiography, increasingly smaller blood 
vessels are being imaged. To study the advancement in 
hardware, algorithms, and methodologies, a 4-D digital 
heart phantom with fine details of coronary arterial tree is 
needed. In this paper, we developed a new 4-D digital 
beating heart phantom by combining a detailed computer 
generated coronary arterial tree with the anatomic and 
motion realistic 4-D XCAT heart phantom. To generate 
the coronary arterial tree, the proximal branches of the 
coronary arteries were first defined based on a set of gated 
CT images of a normal heart. Then, an iterative rule-
based algorithm based on anatomic, physiologic, and 
morphometric properties of the normal coronary arterial 
tree was used to extend the vasculature to cover the whole 
heart. The resulting vasculature was organized in a tree 
structure of arterial segments which had individual end 
points and radii. To superimpose the coronary arterial 
tree on the 4-D XCAT beating heart phantom, the 
locations of the end points of these arterial segments were 
spatially interpolated or extrapolated from the realistic 
motion vectors of the myocardium region of XCAT 
according to the time point of the specific frame. To apply 
the new 4-D digital heart phantom to x-ray imaging, an x-
ray projection simulator, which allowed flexible x-ray tube 
and detector settings, were employed to generate realistic 
projection data of the phantom. In this study, we 
simulated several C-arm coronary fluoroscopies of a 
contrast-enhanced coronary angiography of LAD, LCX, 
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and RCA in RAO and LAO projection positions, and 
rotational angiography. For each simulated fluoroscopy, 
thirty frames of projection images of one heart cycle were 
generated using flat panel detector, which were assessed 
and concluded that the images compared well with data 
from typical patient studies. In conclusion, the new 4-D 
digital beating heart phantom with a superimposed 
detailed coronary arterial tree is a unique tool allowing the 
generation of realistic x-ray projection data that mimic 
those from C-arm and CT angiography. It provides the 
exact status of anatomy and motion in simulation study to 
evaluate different scanning protocols and reconstruction 
algorithms.          

I. INTRODUCTION  
 
To evaluate and optimize the image reconstruction and 

scanning protocols of medical imaging systems, computer 
simulation has become one of the essential components to 
perform medical imaging research in both academic and 
industry. In CT imaging, the first sub-process of this computer 
simulation is the generation of projection data, which involves 
of applying a imaging process of certain geometry and physics 
settings on a mathematical or voxelized phantom. The main 
advantage of using digital phantoms in computer simulation 
studies is that the anatomy and physiological information of 
the phantom are exactly known, thus providing essential data 
to perform accurate and quantitative evaluation on medical 
imaging systems and image reconstruction algorithms. To 
have direct impact to produce significant practical value to 
actual clinical situation, it requires the phantom to be 
anatomically and physiologically realistic enough in 
comparing with the targeted patient and clinical conditions.      

With the continuous resolution improvement in C-arm 
and CT angiography, increasingly smaller blood vessels are 
being imaged. To study the advancement in hardware, 
algorithms, and methodologies through computer simulation 
studies, a 4-D digital heart phantom with fine details of 
coronary arterial tree is needed. In this paper, we developed a 
highly detailed coronary arterial tree and incorporate it into 
the beating heart model of the 4-D XCAT phantom [1] 
making it more applicable to C-arm and CT angiography 
imaging research, an area where the phantom can find great 
use to optimize and improve imaging techniques. 
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II. METHODS 

A. 4-D XCAT Heart Phantom 
The 4-D extended cardiac-torso (XCAT) phantom, a 

computer model of human anatomy and physiology that is 
both realistic and flexible, was previously developed in our 
laboratory [1] and has been under further improvement and 
extension in various aspects. In XCAT, non-uniform rational 
b-splines (NURBS) surfaces were used to construct the high 
level of anatomical details of the organ shapes. The XCAT 
was extended to four dimensions to model the cardiac and 
respiratory motions using 4-D cardiac-gated tagged MRI and 
multi-slice CT data and 4-D respiratory gated CT data 
respectively [2].  

Retrospective ECG-gated high-resolution dual-source CT 
[3] coronary angiographic image data of a contrast enhanced 
normal human heart was obtained from Siemens Healthcare. 
The end-diastole and end-systole phase of the DSCT data 
were used to define the anatomical details of the cardiac layers 
and the proximal branches of the coronary arterial tree as 
shown in Fig. 1. The motion vector fields of different phases 
in respect to end-diastolic heart were calculated from previous 
tagged MRI data and were depicted as in Fig. 2.    
 

 
(a) End-diastole        (b) End-systole 

Fig. 1. The XCAT heart phantom at end-diastole and end-
systole phases  

 

 
(a) 0.2 cardiac cycle   (b) 0.4 cardiac cycle 

 
(c) 0.6 cardiac cycle   (d) 0.8 cardiac cycle 

Fig. 2. The dense motion fields (in a transaxial plane) of the 
XCAT heart phantom at certain cardiac cycles after the end-

diastolic phase 

B. Computer Generated Coronary Arterial Tree 
B.1. Morphometry of Coronary Arterial Tree 

In Kassab’s statistical morphometric data [4], a diameter-
defined Strahler ordering scheme was employed to 
systematically define the orders or generations of the coronary 
artery segments. The arterial segments were categorized into 
non-overlapping diameter ranges, from the largest arteries, 
order 11, to the smallest precapillary arterioles, order 1. The 
diameters, lengths, and connectivity probabilities were defined 
for each vessel order of each main artery. Since the 
morphometric measurements were based on porcine hearts, 
the diameters and the lengths of vessel segment were required 
to be linearly and quadratically (power of 2) scaled 
respectively to nominal human coronary arteries 
measurements according to scaling laws.  

B.2. Fluid Dynamic Bifurcation Constraints 
The relationship between the flow rate through and 

diameter of a branch segment was defined as nQ Cd= , where 
Q is the flow rate, C is a constant that depends on the organ 
and the fluid, d is the diameter, and n, within the range 2 to 3, 
is a constant called the diameter exponent. Using this 
fundamental equation, the optimal branching angles of the 
daughter branches were then determined by the assumption of 
the minimization of shear stress for bifurcation as derived by 
Zamir [5]. 

B.3.Rule-based Generation Algorithm  
Given the morphometry of coronary arterial tree and fluid 

dynamic constraint for bifurcations, an iterative generation 
algorithm, which included self avoidance and boundary 
avoidance algorithms, was used to set of rules to guide the 
growth directions of the daughter branches at bifurcations. 
The details could be found in [6].  The rules were summarized 
as follows: 
1) two daughter branches are produced for each parent branch; 
2) the daughter branches lie in the branching plane; 
3) the flow rate of the parent branch is conserved after 

branching; 
4) the diameters of the daughter branches are statistically 

determined by the connectivity probability and nominal 
diameters of the morphometric data;   

5) the flow-dividing ratio and branching angles are determined 
by the diameters of the daughter branches; 

6) the branch length of a given order is determined statistically 
by “scaled” nominal length of the morphometric data; 

7) the larger branches (order 9 or larger) are confined to the 
epicardium layer and the smaller branches are allowed to 
penetrate into the myocardium layer; 

8) the combined branching vector is determined by the self 
avoidance and boundary avoidance algorithms; and 

9) the normal vector of the branching plane is calculated from 
the parent branch vector and the combined branching 
vector. 
The generation algorithm successively generated two 

daughter segments at each bifurcation as outlined above and 
iterated until the segments of largest six orders were 
constructed.  A coronary arterial tree model, including the 
LAD, LCX and RCA, was generated. The generated coronary 
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arterial tree including down to order 10, order 8, and order 6 
branches were displayed through the transparent ventricular 
wall in Fig. 3 (a), (b) and (c) respectively. The six largest 
order model of the coronary arterial tree, which had diameters 
down to 120μm, consisted of 3940, 1232, and 3902 segments 
for LAD, LCX, and RCA respectively.   

 

 
(a) Order 10 to 11 

 
(b) Order 8 to 11 

 
(c) Order 6 to 11 

Fig. 3. The computer generated coronary arterial at different 
levels of detail  

 

C. X-ray Projection Simulator  
An x-ray projection simulator, called CT project, was 

previously developed in our lab. It calculated attenuation ray 
sum directly from NURBS surfaces of XCAT phantom, which 
has the advantage to avoid alias artifact caused by voxelized 
phantom, especially in high spatial resolution projection data 
generation. The details of the implementation could be found 

in [1]. The simulator had the flexibility to set the x-ray source 
position and energy spectrum, the detector position and 
geometrical shape, and the geometry and speed of the 
trajectory.  
 

III. RESULTS AND DISCUSSIONS  
We generated a new digital phantom with the computer 

generated coronary arterial tree of over 9000 arterial segments 
and superimposed it on the XCAT cardiac phantom at end-
diastolic phase. By using the motion vector fields of XCAT 
phantom at different cardiac phase, the coronary arteries and 
the heart could be deformed to any cardiac phase by spatial 
and temporal interpolation. The digital phantoms at end-
diastolic and end-systolic phases were shown in Fig 4(a) and 
(b) respectively.  

We simulated three C-arm coronary fluoroscopies of a 
contrast-enhanced coronary angiography of LAD, LCX, and 
RCA in RAO and LAO projection positions, and rotational 
angiography. The tree was filled with the mixture of iodine 
contrast and blood. For each simulated fluoroscopy, thirty 
frames of projection images of one heart cycle were generated 
using flat panel detector geometry. The image sequences of 
the RAO, LAO and rotational angiography were depicted in 
Fig 5,   
 Fig 6, and Fig 7 respectively. For rotational angiography 
scan, we set the timing to one rotation per heart cycle. 
Attached gif animated 
  

 
(a) End-diastole         (b) End-systole 

Fig. 4. The new digital beating heart phantoms with a detailed 
coronary arterial tree at end-diastolic and end-systole phases 

 

 
Fig. 5. The image sequence of the simulated fluoroscopy in 

LAO projection position 
[Download animated gif at  http://dmip1.rad.jhmi.edu/~gskfung/CAT_LAO.gif ] 
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Fig. 6. The image sequence of the simulated fluoroscopy in 

RAO projection position 
[Download animated gif at  http://dmip1.rad.jhmi.edu/~gskfung/CAT_RAO.gif ] 

 

 
Fig. 7. The image sequence of the simulated fluoroscopy in 

rotational angiography 
[Download animated gif at  http://dmip1.rad.jhmi.edu/~gskfung/CAT_RA.gif ] 

 

 
(a) LCA in LAO  (b) LCA in RAO   (c) RCA in LAO 
Fig. 8. Some typical samples of coronary C-arm angiography  
 

The simulated flouroscopies were qualitatively assessed 
by two cardiac imaging experts and one C-arm angiography 
expert. In both RAO and LAO projections, all three experts 
agreed the right-dominant anatomy and the non-right 
deformation motion of the coronary arterial tree were realistic 
in comparing to typical coronary C-arm angiography. The 
orientation of the arteries and the projection overlap between 
the arterial branches could be clearly interpreted from the 
angiograms.  

The experts had a number of comments to further 
improve the realistic of the simulation: (1) there were no gaps 
at bifurcations; (2) the curvature of the arteries should be 
continuous; (3) surrounding background organs should be 
included; and (4) image noise at practical situations should be 
added. To address the above issues:  for (1) and (2), the spline 
curves, which pass through the bifurcation points and have 
variable diameters, will be used to model the anatomy of 
coronary arterial tree;  for (3),  the surrounding organs, such 
as spine, rib, lung, and liver, of XCAT phantom will be added; 

and for (4), the image noise can be added based on the mAs 
per projection. 

IV. CONCLUSION  
In conclusion, the new 4-D digital beating heart phantom 

with a superimposed detailed coronary arterial tree is a unique 
tool allowing the generation of realistic x-ray projection data 
that mimic those from C-arm and CT angiography. By 
applying image reconstruction algorithms to the generated 
projection data, in the form of rotational angiography or 
sonogram, we will perform further studies on CT angiography 
using the new phantom.  
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INTRODUCTION 

 
Clinical techniques to diagnose abnormal joint motion are 

highly subjective and have a high false positive rate [1]. 
Additionally, routine radiographic examinations are not 
capable of demonstrating dynamic instabilities [2]. This is a 
significant clinical problem, since individuals suffering from 
joint instabilities experience progressive degenerative disease 
that results in functional disabilities or osteoarthritis (OA) [3].  
However, if physicians are able to diagnose dynamic joint 
instabilities at an early stage, conservative or surgical 
intervention can restore normal function before the onset of 
arthritis or static deformities [4, 5]. 

Dynamic, three-dimensional (3D) measurements of joint 
kinematics have been shown to provide significant 
information regarding joint function [6, 7].  Biplanar 
fluoroscopy methods can accurately determine the 
arthrokinematics of articulations in real time for joints such as 
the hip, shoulder, and knee, where limited superposition of 
bone geometry occurs within the two-dimensional (2D) 
fluoroscopy images. However, radiographic superposition in 
joints such as the carpal bones of the wrist and the tarsal bones 
of the ankle precludes the application of this technique to 
these joints.  

In this paper, we will present novel imaging methodology 
using 4-dimensional (4D; 3D + time) CT techniques to detect 
subtle joint instabilities that can only be observed during joint 
motion.   Two separate dynamic CT imaging methods were 
investigated and image quality and radiation dose were 
assessed using cadaveric wrist joints.  Our results demonstrate 
that high spatial resolution and high temporal resolution 
images could be obtained for qualitative and quantitative joint 
dynamics analysis and pathology diagnosis. 

 
MATERIALS AND METHODS 

 
A. MOTION SIMULUTOR AND CADAVERIC SPECIMEN SETUP 

A custom motion simulator was fabricated to simulate 
radial-ulnar deviation at the wrist joint. We exposed the 
proximal ends of the radius and ulna bone in the cadaveric 
forearm and firmly mounted it to the device (Fig. 1). The hand 
was attached to an acrylic paddle via a single plastic screw 
through the 2nd intermetacarpal space, just proximal to the 
deep intermetacarpal ligament. Two linear slides under the 
paddle provided composite motions in the x and z-axes. A 

programmable stepper motor (connected to a laptop) produced 
belt-driven motion of the paddle in the x-axis, with free 
motion of the paddle in the z-axis, allowing the hand to 
perform periodic radioulnar motion through a maximum arc of 
30° (10° of radial deviation and 20° of ulnar deviation).  The 
wrist was programmed to move at 30 cpm [8, 9], representing 
a typical wrist motion speed [10].   

 
 
B. DYNAMIC 4D CT IMAGING PROTOCOLS 

Two separate dynamic 4D CT imaging methods were 
investigated to scan cadaveric wrist specimens: a 
retrospectively gated scan technique, and a non-gated 
sequential scan technique.  

The retrospectively gated technique is similar to the spiral 
cardiac scans with a small helical pitch.  Image slices 
corresponding to the same motion phase, while from different 
motion cycles, were retrospectively sorted together to form a 
3D volume of the moving joint at a specific phase.  4D data 
sets were obtained by reconstructing 3D volumes at different 
motion phases.  A programmable electronic trigger produced a 
periodic 10 ms voltage spike, which was synchronized to the 
motion profile of the stepper motor and used by the scanner’s 
ECG monitor for reconstruction of the retrospectively-gated 
4D CT [11].  We scanned the cadaveric wrist on a 64-slice CT 
scanner (Sensation 64, Siemens Healthcare, Forchheim, 
Germany).  Images were reconstructed using a partial scan 
reconstruction algorithm with a temporal resolution of 165 ms. 
Each motion phase was evaluated for overall image quality 
and for the presence of motion artifacts by two independent, 
blinded raters – a hand surgeon and a radiologist. 

Fig. 1.  Cadaveric wrist on a custom motion simulator. 
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Fig. 2. Images from phase 1 and phase 4 of the gated 4D CT data set, 

acquired during radial-ulnar deviation of the wrist.

Fig. 3.  Images at phase 3 (a) before and (b) after realignment. 

In the retrospectively gated technique, periodicity was 
required for joint motion which may not be perfectly 
maintained in in-vivo patient studies.  Therefore, we proposed 
a non-gated sequential scanning mode in which periodicity 
was not required.  The cadaveric wrist was imaged using a 
Siemens Definition FLASH scanner (Siemens Healthcare, 
Forchheim, Germany). In this mode, there was no table 
translation between successive scans.  Two seconds of data 
were acquired (one motion cycle). Scan parameters were 0.28 
second gantry rotation, 2 x 64 x 0.6 mm detector collimation 
(38.4 mm z-axis coverage), 140 kVp, and 200 mAs per 
rotation.  Twenty images were reconstructed over the 2 second 
cycle using the commercially implemented dual-source 
cardiac reconstruction algorithm. Reconstruction parameters 
were 75 ms temporal resolution, 150 mm scan FOV, 0.6 mm 
slice thickness for both  medium sharp (B40) and sharp (B70) 
reconstruction kernels.  3D images at each of 20 time points in 
the motion cycle were generated using volume rendering 
techniques (VRT) on the scanner’s image processing 
workstation.   

 
C. DOSE ESTIMATION AND REDUCTION 

 Skin dose was estimated for the non-gated sequential 
scans based upon CTDIvol obtained from the scanner console 
using the established relationship between skin dose and 
CTDIvol [12].  This estimated skin dose was compared with 
published thresholds for skin effects to determine whether 
deterministic effect is a concern.  To follow the ALARA 
guideline, we investigated dose reduction for the 4D scanning 
techniques by scanning the cadaveric wrist at different dose 
levels.  Image quality was evaluated at each dose level to 
determine the minimal dose at which the scans still had 
sufficient diagnostic image quality.  

 
RESULTS 

 
A. RETROSPECTIVELY GATED TECHNIQUE 

Excellent image quality was observed for motion phases 1 
and 4 (Fig. 2) and fair image quality for motion phases 2 and 3 
[13] due to band artifacts [14] and motion artifacts [15, 16].  
The distal scaphoid had a total displacement of 12.4 mm from 
motion phase 1 to 4 (20o ulnar deviation to 10o radial 
deviation) during half of the motion cycle (1 sec), yielding an 
average motion velocity of 12.4 mm/sec for a typical radial-
ulna wrist motion.  Our previous results regarding the 
relationship between motion velocity and image quality [17], 

and the improved temporal resolution of the new Flash CT 
system, indicate that gated dual-source 4D CT can image 
objects moving with velocities up to 44 mm/sec.  Therefore, 
4D CT using a dual-source Flash CT system can freeze joint 
motion in dynamic wrist examinations. However, band 
artifacts occur in gated 4D CT scanning [14] when motion is 
not perfectly periodic or not ideally synchronized to the CT 
acquisition.  The non-periodic motion leads to mismatch 
between scans from successive motion cycles, which 
corresponds to nearby slices in the longitudinal direction and 
presenting as band artifacts.  Band artifacts can be partially 
corrected by retrospective editing of the “ECG”-signal, 
provided that a clear object contour is visible in the image to 
assist with realignment (Fig. 3).  For in-vivo studies, patients 
with pathologies might have difficulty maintaining perfect 
periodic motion, which limits the wide application of this 
technique. 

 
B. NON-GATED SEQUENTIAL TECHNIQUE 

Carpal bones, distal radius and ulna, and joint spaces were 
clearly delineated in the VRT images, without motion blurring 
or banding artifacts, in all motion phases.  4D movies were 
generated from these 3D images to visualize the motion of 
each carpal bone and the change in joint spaces and contact 
areas throughout the motion cycle (movie file included in 
supplementary materials).  Using the workstation’s interactive 
visualization software, the carpal bones and joint motion can 
be visualized from any arbitrary view angle. Radiologists and 
clinicians can interactively select the best angle(s) with which 
to view any articulating structure.  For example, a palmar view 
can be used to show overall wrist motion for all carpal bones 
(Fig. 4a-c), while radial views can be used to evaluate 
scaphoid motion (Fig. 4d-f).  

Additionally, various surface opacities and color schemes 
can be applied, one of which generates a virtual radiograph at 
any arbitrary view from the CT data (Fig. 5). VRT images and 
movies from this cadaveric study were shown to an 
experienced hand surgeon for qualitative evaluation of image 
quality and joint motion.  Image quality was considered to be 
excellent and joint motion and articulating surfaces were 
clearly visualized.  These high spatial and temporal resolution 
3D images will be used to perform quantitative assessment of 
the joint motion.   
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Fig 4. Volume rendered images (top row: palmar view; bottom row: radial view) of cadaver wrist scanned with a 

dynamic scanning mode on a dual source CT scanner.  Images in ulnar deviation (A, D), neutral (B, E), and 
radial deviation (C, F) positions show individual carpal bones and joint spaces clearly in three dimensions. 
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Fig 5. Volume rendered images (top row, dorsal view) and virtual radiography images (bottom row) of the cadaveric wrist at 

radial deviation (A, D), neutral (B, E), and ulnar deviation positions (C, F).  

A BA B  
Fig 6. Volume rendered images of a cadaveric wrist acquired at skin doses of (A) 55 mGy and (B) 9 mGy. These data 

demonstrate the ability to dramatically decrease radiation dose without compromising the ability to clearly visualize the 
bones and joint spaces.  
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C. DOSE ESTIMATION 
The estimated skin dose in this preliminary study, with 

scanning parameters of 140 kVp, 200 mAs per rotation, and a 
2 second scan time, was about 55 mGy, which is a factor of 40 
lower than the minimum threshold for skin effects (2 Gy) [18]. 
Thus, no deterministic skin injury is possible. Potential cancer 
risk is similarly negligible because of the small exposure 
volume and insensitivity of the exposed tissues to radiation.  
Potential dose reduction techniques were evaluated and found 
to enable a factor of 6 reduction in dose (Fig. 6) 

 
DISCUSSIONS AND CONCLUSIONS 

 
One of the greatest problems facing clinicians evaluating 

patients with suspected joint instability is the lack of a reliable 
diagnostic tool. While static instabilities can be diagnosed 
using routine imaging techniques, dynamic instabilities do not 
demonstrate abnormalities on routine radiographic 
examinations, even though these patients continue to have 
disabling pain.  In this study, we have proposed two dynamic 
4D CT imaging methods to detect joint motion and validated 
our methods using a cadaveric wrist and a custom motion 
simulator.  The retrospectively gated method allows us to scan 
the whole joint with excellent image quality if the periodicity 
of joint motion is maintained.  However, the method suffers 
banding artifacts in the cases where the joint motion is not 
perfectly periodic.  The non-gated sequential technique, 
without the requirement of periodic motion, generates high 
spatial and high temporal resolution (75ms) images of the joint 
due to the two data acquisition systems on the dual source CT 
scanner.  Radiation dose from this technique is much lower 
than the threshold for any potential deterministic effect and the 
stochastic effect is extremely low due to the absence of critical 
organs.  One limitation of the non-gated technique is that the 
longitudinal coverage is limited by the detector size, which is 
close to 4 cm for this scanner.  However, this is sufficient for 
imaging of small joints, including the wrist and 
carpometacarpal joint.    
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